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A HYBRID PROJECTION METHOD FOR COMMON ZERO

OF MONOTONE OPERATORS IN HILBERT SPACES

Truong Minh Tuyen

Abstract. The purpose of this paper is to introduce some strong conver-
gence theorems for the problem of finding a common zero of a finite family
of monotone operators and the problem of finding a common fixed point
of a finite family of nonexpansive in Hilbert spaces by hybrid projection
method.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. We use
the symbols⇀ and → to denote the weak convergence and strong convergence,
respectively.

Consider the problem

(1) find x ∈ H such that 0 ∈ Ai(x) for all i = 1, 2, . . . , N,

where H is a real Hilbert space, and Ai : D(Ai) ⊂ H −→ 2H are monotone
operators. We denote the set of solution of this problem by

S = {x ∈ H : 0 ∈ Ai(x), ∀i = 1, 2, . . . , N}.

One of the classical methods for solving equation 0 ∈ A(x) with A is a max-
imal monotone operator in Hilbert space H , is the proximal point algorithm.
The proximal point algorithm generates, for any starting point x0 = x ∈ H , a
sequence {xn} by the rule

(2) xn+1 = JA
rn
(xn) for all n ∈ N,

where {rn} is a sequence of positive real numbers and JA
rn

= (I + rnA)
−1

is the resolvent of A. Some of them dealt with the weak convergence of the
sequence {xn} generated by (2) and others proved strong convergence theorems
by imposing assumptions on A.

Note that, algorithm (2), can be rewritten as

(3) xn+1 − xn + rnA(xn+1) ∋ 0 for all n ∈ N.
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This algorithm was first introduced by Martinet [7]. If ψ : H −→ R ∪ {∞} is
a proper lower semicontinuous convex function, the algorithm reduces to

xn+1 = argminy∈H

{

ψ(y) +
1

2c
‖xn − y‖2

}

for all n ∈ N.

Moreover, Rockafellar [9] has given a more practical method which is an inexact
variant of the method:

(4) xn + en ∋ xn+1 + cnAxn+1 for all n ∈ N,

where {en} is regarded as an error sequence and {cn} is a sequence of positive
regularization parameters. Note that the algorithm (4) can be rewritten as

(5) xn+1 = JA
rn
(xn + en) for all n ∈ N,

This method is called inexact proximal point algorithm. It was shown in Rock-
afellar [9] that if en → 0 quickly enough such that

∑∞
n=1 ‖en‖ < ∞, then

xn ⇀ z ∈ H with 0 ∈ Az.
Further, Rockafellar [9] posed an open question of whether the sequence

generated by (2) converges strongly or not. In 1991, Güler [4] gave an ex-
ample showing that Rockafellar’s proximal point algorithm does not converges
strongly. An example of the authors Bauschke, Matoušková and Reich [2] also
showed that the proximal algorithm only converges weakly but not in norm.

In 2000, Solodov and Svaiter [10] proposed the following algorithm: Choose
any x0 ∈ H and σ ∈ [0, 1). At iteration n, having xn, choose µn > 0 and find
(yn, vn) an inexact solution of

0 ∈ A(x) + µn(x− xn),

with tolerance σ. Define the sequence {xn} by

Cn = {z ∈ H : 〈z − yn, vn〉 ≤ 0},

Qn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0},

xn+1 = PCn∩Qn
x0.

They prove that if the sequence of the regularization parameters µn ≥ c > 0,
then {xn} converges strongly to x∗ ∈ A−10.

To find a fixed point of a nonexpansive mapping T on the closed and convex
subset C of H , that is, find an element p ∈ F (T ) = {x ∈ C : Tx = x}, Nakajo
and Takahashi [8] also considered the sequence {xn} defined by x0 ∈ C and

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖z − yn‖ ≤ ‖z − xn‖},

Qn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},

xn+1 = PCn∩Qn
x0, n ≥ 0,

(6)

where {αn} ⊂ [0, a], with a ∈ [0, 1). They proved that the sequence {xn}
generated by (6) converges strongly to PF (T )x0.
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Further, some generalized hybrid projection methods have been introduced
for γ-strictly pseudocontractive mapping T (see, [5], [12], . . . ) or families of
hemi-relatively and weak relatively nonexpansive mappings (see, [6], [11], . . . ).

In this paper, base on hybrid projection method, we introduce some new
iterative methods to find a common zero of a finite family of monotone operators
or a common fixed point of a finite family of nonexpansive mappings in a real
Hilbert space. The results in this paper are the extension of the results of
Solodov and Svaiter in [10], Nakajo and Takahashi [8].

2. Preliminaries

Let C be a nonempty, closed and convex subset of H . We know that for
each x ∈ H , there is unique PCx ∈ C such that

(7) ‖x− PCx‖ = inf
u∈C

‖x− u‖,

and the mapping PC : H −→ C define by (7) is called metric projection from
H onto C. Moreover, we have

(8) 〈x− PCx, y − PCx〉 ≤ 0, ∀x ∈ H, y ∈ C.

Recall that, a mapping T : C −→ C is said to be nonexpansive mapping if
‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We denote the set of fixed point of T by
F (T ), i.e., F (T ) = {x ∈ C : Tx = x}.

For an operator A : H −→ 2H , we define its domain, range and graph as
follows:

D(A) = {x ∈ H : Ax 6= ∅},

R(A) = ∪{Az : z ∈ D(A)},

and
G(A) = {(x, y) ∈ H ×H : x ∈ D(A), y ∈ Ax},

respectively. The inverse A−1 of A is defined by

x ∈ A−1y, if and only if y ∈ Ax.

The operator A is said to be monotone if, for each x, y ∈ D(A), we have
〈u − v, x − y〉 ≥ 0 for all u ∈ Ax and v ∈ Ay. We denote by I the identity
operator on H . A monotone operator A is said to be maximal monotone if
there is no proper monotone extension of A or R(I +λA) = H for all λ > 0. If
A is monotone, then we can define, for each λ > 0, a nonexpansive single-valued
mapping JA

λ : R(I + λA) −→ D(A) by

JA
λ = (I + λA)−1,

it is called the resolvent of A.
A monotone operator A is said to satisfy the range condition if D(A) ⊂

R(I + λA) for all λ > 0, where D(A) denotes the closure of the domain of A.
We know that for a monotone operator A which satisfies the range condition,
A−10 = F (JA

λ ) for all λ > 0.
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Remark 2.1. If A is a maximal monotone operator, then A satisfies the range
condition.

The following lemmas will be needed in the sequel for the proof of main
results in this paper.

Lemma 2.2 ([5]). Let H be a real Hilbert space. For all x, y ∈ H and t ∈ [0, 1],
we have

‖(1− t)x+ ty‖2 = (1− t)‖x‖2 + t‖y‖2 − t(1− t)‖x− y‖2.

Lemma 2.3. Let H be a real Hilbert space and let {xn} be a sequence in H.

Then, we have the following statements:

i) If xn ⇀ x and ‖xn‖ → ‖x‖ as n→ ∞, then xn → x as n→ ∞.

ii) If xn ⇀ x as n→ ∞, then ‖x‖ ≤ lim infn→∞ ‖xn‖.

Proof. i) We have

‖xn − x‖2 = ‖xn‖
2 − 2〈x, xn〉+ ‖x‖2 → 0 as n→ ∞,

thus xn → x as n→ ∞.
ii) We have

‖xn‖ · ‖x‖ ≥ 〈xn, x〉 → ‖x‖2 as n→ ∞

which implies that ‖x‖ ≤ ‖xn‖, when n large enough. So, lim infn→∞ ‖xn‖ ≥
‖x‖.

This completes the proof. �

Lemma 2.4 ([1]). Let A : D(A) −→ 2H be a monotone operator. Then

λ, µ > 0, and x ∈ H, we have

JA
λ x = JA

µ

(

µ

λ
x+

(

1−
µ

λ

)

JA
λ x

)

.

Lemma 2.5. Let A : D(A) −→ 2H be a monotone operator. For r ≥ s > 0,
we have

‖x− JA
s x‖ ≤ 2‖x− JA

r x‖

for all x ∈ R(I + rA) ∩R(I + sA).

Proof. From Lemma 2.4, we have

‖x− JA
s x‖ ≤ ‖x− JA

r x‖ + ‖JA
r x− JA

s x‖

= ‖x− JA
r x‖ + ‖JA

s (
s

r
x+ (1 −

s

r
)JA

r x)− JA
s x‖

≤ ‖x− JA
r x‖ + (1−

s

r
)‖x− JA

r x‖

≤ 2‖x− JA
r x‖.

This completes the proof. �
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Lemma 2.6 ([3]). Assume T be a nonexpansive self-map of a closed and convex

subset C of a Hilbert space H. If T has a fixed point, then I −T is demiclosed;

that is, whenever {xn} is a sequence in C weakly converging to some x ∈ C
and the sequence {(I − T )xn} strongly converges to some y, it follows that

(I − T )x = y.

3. Main results

The first, we have the following theorem:

Theorem 3.1. Let H be a real Hilbert space. Let C be a nonempty closed and

convex subset of H. Let Ai : D(Ai) ⊂ H −→ 2H , i = 1, 2, . . . , N , be monotone

operators such that S = ∩N
i=1A

−1
i 0 6= ∅ and D(Ai) ⊂ C ⊂ ∩r>0R(I + rAi)

for all i = 1, 2, . . . , N . Let {βi
n} and {rin}, i = 1, 2, . . . , N be sequences

of positive real numbers such that {βi
n} ⊂ (α, β), with α, β ∈ (0, 1) and

mini=1,2,...,N{infn{rin}} ≥ r > 0. Then the sequence {xn} generated by x0 ∈ C
and

y0n = xn,

yin = βi
ny

i−1
n + (1− βi

n)Ji,ny
i−1
n , Ji,n = JAi

ri
n

, i = 1, 2, . . . , N

Cn = {z ∈ C : ‖yNn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0, n ≥ 0,

(9)

converges strongly to PSx0.

Proof. Step 1. Cn and Qn are closed and convex subsets of C.
Indeed, we rewrite Cn and Qn in the forms

Cn = C ∩ {z ∈ H : 〈xn − yNn , z〉 ≤
1

2
(‖xn‖

2 − ‖yNn ‖2)},

Qn = C ∩ {z ∈ H : 〈x0 − xn, z〉 ≤ 〈xn, x0 − xn〉},

respectively. By C is closed and convex and {z ∈ H : 〈xn−y
N
n , z〉 ≤

1

2
(‖xn‖

2−

‖yNn ‖2)}, {z ∈ H : 〈x0 − xn, z〉 ≤ 〈xn, x0 − xn〉} are closed halfspaces of H , so
Cn and Qn are closed and convex subsets of C for all n ≥ 0. It follows that,
Cn ∩Qn is closed and convex in H . Hence, the sequence {xn} is well-defined.
Step 2. S ⊂ Cn ∩Qn for all n ≥ 0.

For each u ∈ S, we have

‖yNn − u‖ = ‖βN
n y

N−1
n + (1− βN

n )Ji,ny
N−1
n ‖

≤ βN
n ‖yN−1

n − u‖+ (1 − βN
n )‖Ji,ny

N−1
n − Ji,nu‖

≤ βN
n ‖yN−1

n − u‖+ (1 − βN
n )‖yN−1

n − u‖

= ‖yN−1
n − u‖
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...

≤ ‖y0n − u‖ = ‖xn − u‖.

By the definition of Cn, we get u ∈ Cn. Hence,

(10) S ⊂ Cn for all n ≥ 0.

Now, we will show that S ⊂ Qn for all n ≥ 0. Indeed, obviously S ⊂ Q0. So
u ∈ C0 ∩Q0 and from x1 = PC0∩Q0

x0, we obtain that

〈x1 − u, x0 − x1〉 ≥ 0.

Thus, u ∈ Q1. By induction, we get u ∈ Qn for all n ≥ 0. Hence,

(11) S ⊂ Qn for all n ≥ 0.

From (10) and (11), we have S ⊂ Cn ∩Qn.
Step 3. {xn} is bounded.

Let x∗ = PSx0 ∈ Cn ∩Qn. Since xn+1 = PCn∩Qn
x0, we have

(12) ‖xn+1 − x0‖ ≤ ‖x0 − x∗‖ for all n ≥ 0,

which implies that the sequence {xn} is bounded.
Step 4. limn→∞ ‖xn+1 − xn‖ = 0.

Since xn+1 = PCn∩Qn
x0, xn+1 ∈ Qn. By the definition of Qn, we have

(13) 〈xn − xn+1, x0 − xn〉 ≥ 0,

which implies that

‖xn+1 − x0‖ ≥ ‖xn − x0‖.

So, {‖xn−x0‖} is nondecresing sequence, which combine with the boundedness
of the sequence {xn}, therefore, there exists the finite limit limn→∞ ‖xn−x0‖ =
d.

From (13), we have

‖xn+1 − xn‖
2 = ‖(xn+1 − x0)− (xn − x0)‖

2

= ‖xn+1 − x0‖
2 − 2〈xn+1 − x0, xn − x0〉+ ‖xn − x0‖

2

= ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 → d2 − d2 = 0 as n→ ∞.

Thus,

(14) lim
n→∞

‖xn+1 − xn‖ = 0.

Step 5. limn→∞ ‖xn − yNn ‖ = 0.
Indeed, by xn+1 ∈ Cn, we get

‖xn+1 − yNn ‖ ≤ ‖xn+1 − xn‖ → 0 as n→ ∞,

which combine with (14) and the following estimate

‖xn − yNn ‖ ≤ ‖xx+1 − yNn ‖+ ‖xn+1 − xn‖,
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therefore

(15) lim
n→∞

‖xn − yNn ‖ = 0.

Step 6. limn→∞ ‖yi−1
n − Ji,ny

i−1
n ‖ = 0 for all i = 1, 2, . . . , N .

Let {xnk
} be a subsequence of {xn} such that

lim sup
n→∞

‖yi−1
n − Ji,ny

i−1
n ‖ = lim

k→∞
‖yi−1

nk
− Ji,nk

yi−1
nk

‖,

and let {xnk
l
} be a subsequence of {xnk

} such that

lim sup
k→∞

‖xnk
− x∗‖ = lim

l→∞
‖xnk

l
− x∗‖.

We have

‖xnk
l
− x∗‖ ≤ ‖xnk

l
− yNnk

l

‖+ ‖yNnk
l

− x∗‖

≤ ‖xnk
l
− yNnk

l

‖+ ‖yN−1
nk

l

− x∗‖

...

≤ ‖xnk
l
− yNnk

l

‖+ ‖y0nk
l

− x∗‖

= ‖xnk
l
− yNnk

l

‖+ ‖xnk
l
− x∗‖.

Therefore,

lim
l→∞

‖xnk
l
− x∗‖ = lim

l→∞
‖yink

l

− x∗‖, i = 1, 2, . . . , N.

Next, by Lemma 2.2 and (9),

‖yink
l

− x∗‖2 = βi
nk

l

‖yi−1
nk

l

− x∗‖2 + (1− βi
nk

l

)‖Ji,nk
l
yi−1
nk

l

− x∗‖2

− (1− βi
nk

l

)βi
nk

l

‖yi−1
nk

l

− Ji,nk
l
yi−1
nk

l

‖2

≤ ‖yi−1
nk

l

− x∗‖2 − (1− βi
nk

l

)βi
nk

l

‖yi−1
nk

l

− Ji,nk
l
yi−1
nk

l

‖2

≤ ‖xnk
l
− x∗‖2 − (1− βi

nk
l

)βi
nk

l

‖yi−1
nk

l

− Ji,nk
l
yi−1
nk

l

‖2.

Hence,

α(1− β)‖yi−1
nk

l

− Ji,nk
l
yi−1
nk

l

‖2 ≤ ‖xnk
l
− x∗‖2 − ‖yink

l

− x∗‖2 → 0,

as l → ∞ for all i = 1, 2, . . . , N . So, ‖yi−1
nk

l

− Ji,nk
l
yi−1
nk

l

‖ → 0, which implies

that

lim sup
n→∞

‖yi−1
n − Ji,ny

i−1
n ‖ = 0.

Thus, limn→∞ ‖yi−1
n − Ji,ny

i−1
n ‖ = 0 for all i = 1, 2, . . . , N .

Step 7. limn→∞ xn = PSx0.
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We show that ‖xn − Ji,nxn‖ → 0 for all i = 1, 2, . . . , N . Indeed, in the case
that i = 1, ‖xn−J1,nxn‖ = ‖y0n−J1,ny

0
n‖ → 0. In the case that i = 2, we have

‖xn − J2,nxn‖ ≤ ‖xn − y1n‖+ ‖y1n − J2,ny
1
n‖+ ‖J2,ny

1
n − J2,nxn‖

≤ 2‖xn − y1n‖+ ‖y1n − J2,ny
1
n‖

≤ 2‖y0n − J1,ny
0
n‖+ ‖y1n − J2,ny

1
n‖ → 0.

So, we get ‖xn − J2,nxn‖ → 0. Similarly, we obtain that ‖xn − Ji,nxn‖ → 0
for all i = 3, 4, . . . , N . By Lemma 2.5, ‖xn − JAi

r xn‖ ≤ 2‖xn − Ji,nxn‖. So,
‖xn − JAi

r xn‖ → 0 for all i = 1, 2, . . . , N .
Since, {xn} is bounded, there exists a subsequence {xnk

} of {xn} such that
xnk

⇀ x† as k → ∞. From ‖xnk
− JAi

r xnk
‖ → 0 for all i = 1, 2, . . . , N and

Lemma 2.6, we get x† ∈ S.
By x∗ = PSx0, x

† ∈ S, (12) and Lemma 2.3, we have

‖x0 − x∗‖ ≤ ‖x0 − x†‖ ≤ lim inf
k→∞

‖xnk
− x0‖

≤ lim sup
k→∞

‖xnk
− x0‖ ≤ ‖x0 − x∗‖.

From the definition of x∗, it follows that x† = x∗. Thus, ‖xnk
−x0‖ → ‖x∗−x0‖

and by Lemma 2.3, we get xnk
→ x∗ as k → ∞. Form the uniqueness of x∗,

we obtain that xn → x∗ as n→ ∞.
This completes the proof. �

Remark 3.2. IfN = 1, we can choose the sequence {βn} ⊂ [0, a), with a ∈ [0, 1).
So, we have the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let C be a nonempty closed and

convex subset of H. Let A : D(A) ⊂ H −→ 2H be a monotone operator such

that S = A−10 6= ∅ and D(A) ⊂ C ⊂ ∩r>0R(I + rA). Let {βn} and {rn} be

sequences of positive real numbers such that {βn} ⊂ [0, a), with a ∈ [0, 1) and

infn{rn} ≥ r > 0. Then the sequence {xn} generated by x0 ∈ C and

yn = βnxn + (1− βn)J
A
rn
xn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0, n ≥ 0,

(16)

converges strongly to PSx0.

Remark 3.4. Theorem 3.1 is more general than the result of Solodov and Svaiter
in [10].

Next, we give strong convergence theorems to find a common fixed point of
nonexpansive mapping. By the careful analysis of the proof of Theorem 3.1,
we can obtain the following results for the problem of finding a common fixed
point of a finite family of nonexpasive mappings. Because its proof is much
simpler than that of Theorem 3.1, we omit it proof.
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Theorem 3.5. Let H be a real Hilbert space. Let C be a nonempty closed

and convex subset of H. Let Ti : C −→ C, i = 1, 2, . . . , N , be nonexpansive

mappings from C into itself such that S = ∩N
i=1F (Ti) 6= ∅. Let {βi

n} be se-

quences of positive real numbers such that {βi
n} ⊂ (α, β) with α, β ∈ (0, 1) for

all i = 1, 2, . . . , N . Then the sequence {xn} generated by x0 ∈ C and

y0n = xn,

yin = βi
ny

i−1
n + (1 − βi

n)Tiy
i−1
n , i = 1, 2, . . . , N

Cn = {z ∈ C : ‖yNn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0, n ≥ 0,

(17)

converges strongly to PSx0.
In the case N = 1, we have the following corollary:

Corollary 3.6 (Theorem 3.4, in [8]). Let H be a real Hilbert space and let C be

a nonempty closed and convex subset of H. Let T : C −→ C be a nonexpansive

mapping from C into itself such that S = F (T ) 6= ∅. Let {βn} be a sequence of

positive real numbers such that {βn} ⊂ [0, a), with a ∈ [0, 1). Then the sequence

{xn} generated by x0 ∈ C and

yn = βnxn + (1− βn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0, n ≥ 0,

(18)

converges strongly to PSx0.

Remark 3.7. The Theorem 3.5 is more general than the result of Nakajo and
Takahashi in [8].
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