Commun. Korean Math. Soc. **32** (2017), No. 2, pp. 447–456 https://doi.org/10.4134/CKMS.c160096 pISSN: 1225-1763 / eISSN: 2234-3024

A HYBRID PROJECTION METHOD FOR COMMON ZERO OF MONOTONE OPERATORS IN HILBERT SPACES

TRUONG MINH TUYEN

ABSTRACT. The purpose of this paper is to introduce some strong convergence theorems for the problem of finding a common zero of a finite family of monotone operators and the problem of finding a common fixed point of a finite family of nonexpansive in Hilbert spaces by hybrid projection method.

1. Introduction

Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. We use the symbols \rightarrow and \rightarrow to denote the weak convergence and strong convergence, respectively.

Consider the problem

(1) find
$$x \in H$$
 such that $0 \in A_i(x)$ for all $i = 1, 2, ..., N$.

where H is a real Hilbert space, and $A_i : D(A_i) \subset H \longrightarrow 2^H$ are monotone operators. We denote the set of solution of this problem by

$$S = \{ x \in H : 0 \in A_i(x), \forall i = 1, 2, \dots, N \}.$$

One of the classical methods for solving equation $0 \in A(x)$ with A is a maximal monotone operator in Hilbert space H, is the proximal point algorithm. The proximal point algorithm generates, for any starting point $x_0 = x \in H$, a sequence $\{x_n\}$ by the rule

(2)
$$x_{n+1} = J_{r_n}^A(x_n) \text{ for all } n \in \mathbb{N},$$

where $\{r_n\}$ is a sequence of positive real numbers and $J_{r_n}^A = (I + r_n A)^{-1}$ is the resolvent of A. Some of them dealt with the weak convergence of the sequence $\{x_n\}$ generated by (2) and others proved strong convergence theorems by imposing assumptions on A.

Note that, algorithm (2), can be rewritten as

(3)
$$x_{n+1} - x_n + r_n A(x_{n+1}) \ni 0 \text{ for all } n \in \mathbb{N}.$$

Received April 29, 2016.

Key words and phrases. monotone operator, hybrid projection method, nonexpansive mapping.

O2017Korean Mathematical Society

²⁰¹⁰ Mathematics Subject Classification. 47H06, 47H09, 47H10, 47J25.

This algorithm was first introduced by Martinet [7]. If $\psi : H \longrightarrow \mathbb{R} \cup \{\infty\}$ is a proper lower semicontinuous convex function, the algorithm reduces to

$$x_{n+1} = \operatorname{argmin}_{y \in H} \left\{ \psi(y) + \frac{1}{2c} \|x_n - y\|^2 \right\} \text{ for all } n \in \mathbb{N}$$

Moreover, Rockafellar [9] has given a more practical method which is an inexact variant of the method:

(4)
$$x_n + e_n \ni x_{n+1} + c_n A x_{n+1} \text{ for all } n \in \mathbb{N},$$

where $\{e_n\}$ is regarded as an error sequence and $\{c_n\}$ is a sequence of positive regularization parameters. Note that the algorithm (4) can be rewritten as

(5)
$$x_{n+1} = J_{r_n}^A(x_n + e_n) \text{ for all } n \in \mathbb{N},$$

This method is called inexact proximal point algorithm. It was shown in Rockafellar [9] that if $e_n \to 0$ quickly enough such that $\sum_{n=1}^{\infty} ||e_n|| < \infty$, then $x_n \rightharpoonup z \in H$ with $0 \in Az$.

Further, Rockafellar [9] posed an open question of whether the sequence generated by (2) converges strongly or not. In 1991, Güler [4] gave an example showing that Rockafellar's proximal point algorithm does not converges strongly. An example of the authors Bauschke, Matoušková and Reich [2] also showed that the proximal algorithm only converges weakly but not in norm.

In 2000, Solodov and Svaiter [10] proposed the following algorithm: Choose any $x_0 \in H$ and $\sigma \in [0, 1)$. At iteration *n*, having x_n , choose $\mu_n > 0$ and find (y_n, v_n) an inexact solution of

$$0 \in A(x) + \mu_n(x - x_n),$$

with tolerance σ . Define the sequence $\{x_n\}$ by

$$C_n = \{z \in H : \langle z - y_n, v_n \rangle \le 0\},$$

$$Q_n = \{z \in H : \langle z - x_n, x_0 - x_n \rangle \le 0\},$$

$$x_{n+1} = P_{C_n \cap Q_n} x_0.$$

They prove that if the sequence of the regularization parameters $\mu_n \ge c > 0$, then $\{x_n\}$ converges strongly to $x^* \in A^{-1}0$.

To find a fixed point of a nonexpansive mapping T on the closed and convex subset C of H, that is, find an element $p \in F(T) = \{x \in C : Tx = x\}$, Nakajo and Takahashi [8] also considered the sequence $\{x_n\}$ defined by $x_0 \in C$ and

(6)
$$y_n = \alpha_n x_n + (1 - \alpha_n) T x_n,$$
$$C_n = \{ z \in C : \| z - y_n \| \le \| z - x_n \| \},$$
$$Q_n = \{ z \in C : \langle z - x_n, x_0 - x_n \rangle \le 0 \},$$
$$x_{n+1} = P_{C_n \cap Q_n} x_0, \ n \ge 0,$$

where $\{\alpha_n\} \subset [0, a]$, with $a \in [0, 1)$. They proved that the sequence $\{x_n\}$ generated by (6) converges strongly to $P_{F(T)}x_0$.

Further, some generalized hybrid projection methods have been introduced for γ -strictly pseudocontractive mapping T (see, [5], [12], ...) or families of hemi-relatively and weak relatively nonexpansive mappings (see, [6], [11], ...).

In this paper, base on hybrid projection method, we introduce some new iterative methods to find a common zero of a finite family of monotone operators or a common fixed point of a finite family of nonexpansive mappings in a real Hilbert space. The results in this paper are the extension of the results of Solodov and Svaiter in [10], Nakajo and Takahashi [8].

2. Preliminaries

Let C be a nonempty, closed and convex subset of H. We know that for each $x \in H$, there is unique $P_C x \in C$ such that

(7)
$$||x - P_C x|| = \inf_{u \in C} ||x - u||,$$

and the mapping $P_C: H \longrightarrow C$ define by (7) is called metric projection from H onto C. Moreover, we have

(8)
$$\langle x - P_C x, y - P_C x \rangle \leq 0, \ \forall x \in H, \ y \in C.$$

Recall that, a mapping $T : C \longrightarrow C$ is said to be nonexpansive mapping if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. We denote the set of fixed point of T by F(T), i.e., $F(T) = \{x \in C : Tx = x\}$.

For an operator $A: H \longrightarrow 2^{H}$, we define its domain, range and graph as follows:

$$D(A) = \{ x \in H : Ax \neq \emptyset \},\$$

$$R(A) = \cup \{ Az : z \in D(A) \},\$$

and

$$G(A) = \{ (x, y) \in H \times H : x \in D(A), y \in Ax \},\$$

respectively. The inverse A^{-1} of A is defined by

$$x \in A^{-1}y$$
, if and only if $y \in Ax$.

The operator A is said to be monotone if, for each $x, y \in D(A)$, we have $\langle u - v, x - y \rangle \geq 0$ for all $u \in Ax$ and $v \in Ay$. We denote by I the identity operator on H. A monotone operator A is said to be maximal monotone if there is no proper monotone extension of A or $R(I + \lambda A) = H$ for all $\lambda > 0$. If A is monotone, then we can define, for each $\lambda > 0$, a nonexpansive single-valued mapping J_{λ}^{A} : $R(I + \lambda A) \longrightarrow D(A)$ by

$$I_{\lambda}^{A} = (I + \lambda A)^{-1},$$

it is called the resolvent of A.

A monotone operator A is said to satisfy the range condition if $D(A) \subset R(I + \lambda A)$ for all $\lambda > 0$, where $\overline{D(A)}$ denotes the closure of the domain of A. We know that for a monotone operator A which satisfies the range condition, $A^{-1}0 = F(J^A_{\lambda})$ for all $\lambda > 0$.

Remark 2.1. If A is a maximal monotone operator, then A satisfies the range condition.

The following lemmas will be needed in the sequel for the proof of main results in this paper.

Lemma 2.2 ([5]). Let H be a real Hilbert space. For all $x, y \in H$ and $t \in [0, 1]$, we have

$$||(1-t)x + ty||^2 = (1-t)||x||^2 + t||y||^2 - t(1-t)||x-y||^2.$$

Lemma 2.3. Let H be a real Hilbert space and let $\{x_n\}$ be a sequence in H. Then, we have the following statements:

i) If $x_n \rightharpoonup x$ and $||x_n|| \rightarrow ||x||$ as $n \rightarrow \infty$, then $x_n \rightarrow x$ as $n \rightarrow \infty$.

ii) If $x_n \rightharpoonup x$ as $n \rightarrow \infty$, then $||x|| \le \liminf_{n \to \infty} ||x_n||$.

Proof. i) We have

$$||x_n - x||^2 = ||x_n||^2 - 2\langle x, x_n \rangle + ||x||^2 \to 0 \text{ as } n \to \infty,$$

thus $x_n \to x$ as $n \to \infty$.

ii) We have

$$||x_n|| \cdot ||x|| \ge \langle x_n, x \rangle \to ||x||^2 \text{ as } n \to \infty$$

which implies that $||x|| \le ||x_n||$, when n large enough. So, $\liminf_{n\to\infty} ||x_n|| \ge ||x_n||$ ||x||.

This completes the proof.

Lemma 2.4 ([1]). Let $A : D(A) \longrightarrow 2^H$ be a monotone operator. Then $\lambda, \mu > 0, and x \in H, we have$

$$J_{\lambda}^{A}x = J_{\mu}^{A} \left(\frac{\mu}{\lambda}x + \left(1 - \frac{\mu}{\lambda}\right)J_{\lambda}^{A}x\right).$$

Lemma 2.5. Let $A : D(A) \longrightarrow 2^H$ be a monotone operator. For $r \ge s > 0$, we have - 1 .

$$||x - J_s^A x|| \le 2||x - J_r^A x||$$

for all $x \in R(I + rA) \cap R(I + sA)$.

Proof. From Lemma 2.4, we have

$$\begin{aligned} \|x - J_s^A x\| &\leq \|x - J_r^A x\| + \|J_r^A x - J_s^A x\| \\ &= \|x - J_r^A x\| + \|J_s^A (\frac{s}{r} x + (1 - \frac{s}{r}) J_r^A x) - J_s^A x\| \\ &\leq \|x - J_r^A x\| + (1 - \frac{s}{r}) \|x - J_r^A x\| \\ &\leq 2\|x - J_r^A x\|. \end{aligned}$$

This completes the proof.

Lemma 2.6 ([3]). Assume T be a nonexpansive self-map of a closed and convex subset C of a Hilbert space H. If T has a fixed point, then I - T is demiclosed; that is, whenever $\{x_n\}$ is a sequence in C weakly converging to some $x \in C$ and the sequence $\{(I - T)x_n\}$ strongly converges to some y, it follows that (I - T)x = y.

3. Main results

The first, we have the following theorem:

Theorem 3.1. Let H be a real Hilbert space. Let C be a nonempty closed and convex subset of H. Let $A_i: D(A_i) \subset H \longrightarrow 2^H$, i = 1, 2, ..., N, be monotone operators such that $S = \bigcap_{i=1}^N A_i^{-1} 0 \neq \emptyset$ and $\overline{D(A_i)} \subset C \subset \bigcap_{r>0} R(I + rA_i)$ for all i = 1, 2, ..., N. Let $\{\beta_n^i\}$ and $\{r_n^i\}$, i = 1, 2, ..., N be sequences of positive real numbers such that $\{\beta_n^i\} \subset (\alpha, \beta)$, with $\alpha, \beta \in (0, 1)$ and $\min_{i=1,2,...,N} \{\inf_n \{r_n^i\}\} \geq r > 0$. Then the sequence $\{x_n\}$ generated by $x_0 \in C$ and

(9)

$$y_{n}^{0} = x_{n},$$

$$y_{n}^{i} = \beta_{n}^{i} y_{n}^{i-1} + (1 - \beta_{n}^{i}) J_{i,n} y_{n}^{i-1}, \ J_{i,n} = J_{r_{n}^{i}}^{A_{i}}, \ i = 1, 2, \dots, N$$

$$C_{n} = \{ z \in C : \ \|y_{n}^{N} - z\| \leq \|x_{n} - z\|\},$$

$$Q_{n} = \{ z \in C : \ \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0 \},$$

$$x_{n+1} = P_{C_{n} \cap Q_{n}} x_{0}, \ n \geq 0,$$

converges strongly to $P_S x_0$.

Proof. Step 1. C_n and Q_n are closed and convex subsets of C. Indeed, we rewrite C_n and Q_n in the forms

$$C_n = C \cap \{ z \in H : \langle x_n - y_n^N, z \rangle \le \frac{1}{2} (\|x_n\|^2 - \|y_n^N\|^2) \},\$$

$$Q_n = C \cap \{ z \in H : \langle x_0 - x_n, z \rangle \le \langle x_n, x_0 - x_n \rangle \},\$$

respectively. By *C* is closed and convex and $\{z \in H : \langle x_n - y_n^N, z \rangle \leq \frac{1}{2}(||x_n||^2 - ||y_n^N||^2)\}$, $\{z \in H : \langle x_0 - x_n, z \rangle \leq \langle x_n, x_0 - x_n \rangle\}$ are closed halfspaces of *H*, so C_n and Q_n are closed and convex subsets of *C* for all $n \geq 0$. It follows that, $C_n \cap Q_n$ is closed and convex in *H*. Hence, the sequence $\{x_n\}$ is well-defined. **Step 2.** $S \subset C_n \cap Q_n$ for all $n \geq 0$.

For each $u \in S$, we have

$$\begin{split} \|y_n^N - u\| &= \|\beta_n^N y_n^{N-1} + (1 - \beta_n^N) J_{i,n} y_n^{N-1}\| \\ &\leq \beta_n^N \|y_n^{N-1} - u\| + (1 - \beta_n^N) \|J_{i,n} y_n^{N-1} - J_{i,n} u\| \\ &\leq \beta_n^N \|y_n^{N-1} - u\| + (1 - \beta_n^N) \|y_n^{N-1} - u\| \\ &= \|y_n^{N-1} - u\| \end{split}$$

÷ $\leq \|y_n^0 - u\| = \|x_n - u\|.$

By the definition of C_n , we get $u \in C_n$. Hence,

(10)
$$S \subset C_n \text{ for all } n \ge 0.$$

Now, we will show that $S \subset Q_n$ for all $n \ge 0$. Indeed, obviously $S \subset Q_0$. So $u \in C_0 \cap Q_0$ and from $x_1 = P_{C_0 \cap Q_0} x_0$, we obtain that

$$\langle x_1 - u, x_0 - x_1 \rangle \ge 0.$$

Thus, $u \in Q_1$. By induction, we get $u \in Q_n$ for all $n \ge 0$. Hence,

(11)
$$S \subset Q_n \text{ for all } n \ge 0.$$

From (10) and (11), we have $S \subset C_n \cap Q_n$.

Step 3. $\{x_n\}$ is bounded.

Let $x^* = P_S x_0 \in C_n \cap Q_n$. Since $x_{n+1} = P_{C_n \cap Q_n} x_0$, we have

(12)
$$||x_{n+1} - x_0|| \le ||x_0 - x^*||$$
 for all $n \ge 0$,

which implies that the sequence $\{x_n\}$ is bounded.

Step 4. $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0.$

Since $x_{n+1} = P_{C_n \cap Q_n} x_0, x_{n+1} \in Q_n$. By the definition of Q_n , we have

(13)
$$\langle x_n - x_{n+1}, x_0 - x_n \rangle \ge 0,$$

which implies that

$$||x_{n+1} - x_0|| \ge ||x_n - x_0||.$$

So, $\{\|x_n - x_0\|\}$ is nondecreasing sequence, which combine with the boundedness of the sequence $\{x_n\}$, therefore, there exists the finite limit $\lim_{n\to\infty} ||x_n - x_0|| =$ d.

From (13), we have

$$\begin{aligned} \|x_{n+1} - x_n\|^2 &= \|(x_{n+1} - x_0) - (x_n - x_0)\|^2 \\ &= \|x_{n+1} - x_0\|^2 - 2\langle x_{n+1} - x_0, x_n - x_0\rangle + \|x_n - x_0\|^2 \\ &= \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 - 2\langle x_{n+1} - x_n, x_n - x_0\rangle \\ &\leq \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 \to d^2 - d^2 = 0 \text{ as } n \to \infty. \end{aligned}$$

Thus,

(14)
$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$

Step 5. $\lim_{n\to\infty} ||x_n - y_n^N|| = 0$. Indeed, by $x_{n+1} \in C_n$, we get

$$||x_{n+1} - y_n^N|| \le ||x_{n+1} - x_n|| \to 0 \text{ as } n \to \infty,$$

which combine with (14) and the following estimate

$$|x_n - y_n^N|| \le ||x_{n+1} - y_n^N|| + ||x_{n+1} - x_n||,$$

therefore

(15)
$$\lim_{n \to \infty} \|x_n - y_n^N\| = 0.$$

Step 6. $\lim_{n\to\infty} \|y_n^{i-1} - J_{i,n}y_n^{i-1}\| = 0$ for all $i = 1, 2, \ldots, N$. Let $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ such that

$$\limsup_{n \to \infty} \|y_n^{i-1} - J_{i,n}y_n^{i-1}\| = \lim_{k \to \infty} \|y_{n_k}^{i-1} - J_{i,n_k}y_{n_k}^{i-1}\|,$$

and let $\{x_{n_{k_l}}\}$ be a subsequence of $\{x_{n_k}\}$ such that

$$\limsup_{k \to \infty} \|x_{n_k} - x^*\| = \lim_{l \to \infty} \|x_{n_{k_l}} - x^*\|.$$

We have

$$\begin{aligned} \|x_{n_{k_{l}}} - x^{*}\| &\leq \|x_{n_{k_{l}}} - y_{n_{k_{l}}}^{N}\| + \|y_{n_{k_{l}}}^{N} - x^{*}\| \\ &\leq \|x_{n_{k_{l}}} - y_{n_{k_{l}}}^{N}\| + \|y_{n_{k_{l}}}^{N-1} - x^{*}\| \\ &\vdots \\ &\leq \|x_{n_{k_{l}}} - y_{n_{k_{l}}}^{N}\| + \|y_{n_{k_{l}}}^{0} - x^{*}\| \\ &= \|x_{n_{k_{l}}} - y_{n_{k_{l}}}^{N}\| + \|x_{n_{k_{l}}} - x^{*}\|. \end{aligned}$$

Therefore,

$$\lim_{l \to \infty} \|x_{n_{k_l}} - x^*\| = \lim_{l \to \infty} \|y_{n_{k_l}}^i - x^*\|, \ i = 1, 2, \dots, N.$$

Next, by Lemma 2.2 and (9),

$$\begin{split} \|y_{n_{k_{l}}}^{i} - x^{*}\|^{2} &= \beta_{n_{k_{l}}}^{i} \|y_{n_{k_{l}}}^{i-1} - x^{*}\|^{2} + (1 - \beta_{n_{k_{l}}}^{i})\|J_{i,n_{k_{l}}}y_{n_{k_{l}}}^{i-1} - x^{*}\|^{2} \\ &- (1 - \beta_{n_{k_{l}}}^{i})\beta_{n_{k_{l}}}^{i} \|y_{n_{k_{l}}}^{i-1} - J_{i,n_{k_{l}}}y_{n_{k_{l}}}^{i-1}\|^{2} \\ &\leq \|y_{n_{k_{l}}}^{i-1} - x^{*}\|^{2} - (1 - \beta_{n_{k_{l}}}^{i})\beta_{n_{k_{l}}}^{i} \|y_{n_{k_{l}}}^{i-1} - J_{i,n_{k_{l}}}y_{n_{k_{l}}}^{i-1}\|^{2} \\ &\leq \|x_{n_{k_{l}}} - x^{*}\|^{2} - (1 - \beta_{n_{k_{l}}}^{i})\beta_{n_{k_{l}}}^{i} \|y_{n_{k_{l}}}^{i-1} - J_{i,n_{k_{l}}}y_{n_{k_{l}}}^{i-1}\|^{2}. \end{split}$$

Hence,

$$\alpha(1-\beta)\|y_{n_{k_l}}^{i-1} - J_{i,n_{k_l}}y_{n_{k_l}}^{i-1}\|^2 \le \|x_{n_{k_l}} - x^*\|^2 - \|y_{n_{k_l}}^i - x^*\|^2 \to 0,$$

as $l \to \infty$ for all i = 1, 2, ..., N. So, $\|y_{n_{k_l}}^{i-1} - J_{i, n_{k_l}} y_{n_{k_l}}^{i-1}\| \to 0$, which implies that

$$\limsup_{n \to \infty} \|y_n^{i-1} - J_{i,n}y_n^{i-1}\| = 0.$$

Thus, $\lim_{n\to\infty} \|y_n^{i-1} - J_{i,n}y_n^{i-1}\| = 0$ for all i = 1, 2, ..., N. Step 7. $\lim_{n\to\infty} x_n = P_S x_0$. T. M. TUYEN

We show that $||x_n - J_{i,n}x_n|| \to 0$ for all i = 1, 2, ..., N. Indeed, in the case that $i = 1, ||x_n - J_{1,n}x_n|| = ||y_n^0 - J_{1,n}y_n^0|| \to 0$. In the case that i = 2, we have

$$\begin{aligned} \|x_n - J_{2,n}x_n\| &\leq \|x_n - y_n^1\| + \|y_n^1 - J_{2,n}y_n^1\| + \|J_{2,n}y_n^1 - J_{2,n}x_n\| \\ &\leq 2\|x_n - y_n^1\| + \|y_n^1 - J_{2,n}y_n^1\| \\ &\leq 2\|y_n^0 - J_{1,n}y_n^0\| + \|y_n^1 - J_{2,n}y_n^1\| \to 0. \end{aligned}$$

So, we get $||x_n - J_{2,n}x_n|| \to 0$. Similarly, we obtain that $||x_n - J_{i,n}x_n|| \to 0$ for all i = 3, 4, ..., N. By Lemma 2.5, $||x_n - J_r^{A_i}x_n|| \le 2||x_n - J_{i,n}x_n||$. So, $||x_n - J_r^{A_i}x_n|| \to 0$ for all i = 1, 2, ..., N.

Since, $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightarrow x^{\dagger}$ as $k \rightarrow \infty$. From $||x_{n_k} - J_r^{A_i} x_{n_k}|| \rightarrow 0$ for all i = 1, 2, ..., N and Lemma 2.6, we get $x^{\dagger} \in S$.

By $x^* = P_S x_0, x^{\dagger} \in S$, (12) and Lemma 2.3, we have

$$||x_0 - x^*|| \le ||x_0 - x^{\dagger}|| \le \liminf_{k \to \infty} ||x_{n_k} - x_0||$$

$$\le \limsup_{k \to \infty} ||x_{n_k} - x_0|| \le ||x_0 - x^*||.$$

From the definition of x^* , it follows that $x^{\dagger} = x^*$. Thus, $||x_{n_k} - x_0|| \to ||x^* - x_0||$ and by Lemma 2.3, we get $x_{n_k} \to x^*$ as $k \to \infty$. Form the uniqueness of x^* , we obtain that $x_n \to x^*$ as $n \to \infty$.

This completes the proof.

Remark 3.2. If N = 1, we can choose the sequence $\{\beta_n\} \subset [0, a)$, with $a \in [0, 1)$. So, we have the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let C be a nonempty closed and convex subset of H. Let $A : D(A) \subset H \longrightarrow 2^{H}$ be a monotone operator such that $S = A^{-1}0 \neq \emptyset$ and $\overline{D(A)} \subset C \subset \cap_{r>0}R(I + rA)$. Let $\{\beta_n\}$ and $\{r_n\}$ be sequences of positive real numbers such that $\{\beta_n\} \subset [0, a)$, with $a \in [0, 1)$ and $\inf_n \{r_n\} \geq r > 0$. Then the sequence $\{x_n\}$ generated by $x_0 \in C$ and

(16)
$$y_{n} = \beta_{n}x_{n} + (1 - \beta_{n})J_{r_{n}}^{A}x_{n},$$
$$C_{n} = \{z \in H : ||y_{n} - z|| \leq ||x_{n} - z||\},$$
$$Q_{n} = \{z \in H : \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0\},$$
$$x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, n \geq 0,$$

converges strongly to $P_S x_0$.

Remark 3.4. Theorem 3.1 is more general than the result of Solodov and Svaiter in [10].

Next, we give strong convergence theorems to find a common fixed point of nonexpansive mapping. By the careful analysis of the proof of Theorem 3.1, we can obtain the following results for the problem of finding a common fixed point of a finite family of nonexpasive mappings. Because its proof is much simpler than that of Theorem 3.1, we omit it proof.

Theorem 3.5. Let H be a real Hilbert space. Let C be a nonempty closed and convex subset of H. Let $T_i : C \longrightarrow C$, i = 1, 2, ..., N, be nonexpansive mappings from C into itself such that $S = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $\{\beta_n^i\}$ be sequences of positive real numbers such that $\{\beta_n^i\} \subset (\alpha, \beta)$ with $\alpha, \beta \in (0, 1)$ for all i = 1, 2, ..., N. Then the sequence $\{x_n\}$ generated by $x_0 \in C$ and

(17)

$$y_{n}^{0} = x_{n},$$

$$y_{n}^{i} = \beta_{n}^{i} y_{n}^{i-1} + (1 - \beta_{n}^{i}) T_{i} y_{n}^{i-1}, \quad i = 1, 2, ..., N$$

$$C_{n} = \{ z \in C : ||y_{n}^{N} - z|| \leq ||x_{n} - z|| \},$$

$$Q_{n} = \{ z \in C : \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0 \},$$

$$x_{n+1} = P_{C_{n} \cap Q_{n}} x_{0}, \quad n \geq 0,$$

converges strongly to $P_S x_0$.

In the case N = 1, we have the following corollary:

Corollary 3.6 (Theorem 3.4, in [8]). Let H be a real Hilbert space and let C be a nonempty closed and convex subset of H. Let $T : C \longrightarrow C$ be a nonexpansive mapping from C into itself such that $S = F(T) \neq \emptyset$. Let $\{\beta_n\}$ be a sequence of positive real numbers such that $\{\beta_n\} \subset [0, a)$, with $a \in [0, 1)$. Then the sequence $\{x_n\}$ generated by $x_0 \in C$ and

(18)
$$y_{n} = \beta_{n} x_{n} + (1 - \beta_{n}) T x_{n},$$
$$C_{n} = \{ z \in C : ||y_{n} - z|| \leq ||x_{n} - z|| \},$$
$$Q_{n} = \{ z \in C : \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0 \},$$
$$x_{n+1} = P_{C_{n} \cap Q_{n}} x_{0}, n \geq 0,$$

converges strongly to $P_S x_0$.

Remark 3.7. The Theorem 3.5 is more general than the result of Nakajo and Takahashi in [8].

References

- [1] V. Barbu and Th. Precupanu, *Convexity and Optimization in Banach spaces*, Editura Academiei R. S. R., Bucharest, 1978.
- [2] H. H. Bauschke, E. Matoušková, and S. Reich, Projection and proximal point methods convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715–738.
- [3] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
- [4] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403–419.
- [5] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336–346.
- [6] J. Kang, Y. Su, and X. Zhang, Hybrid algorithm for fixed points of weak relatively nonexpansive mappings and applications, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 4, 755–765.
- B. Martinet, Regularisation d'inéquations variationnelles par approximations successives, Rev. FranMc-aise Informat, Recherche Operationnalle 4 (1970), 154–158.

T. M. TUYEN

- [8] K. Nakajo and W. Takahashi, Strong convergence theorem for nonexpansive mappings and nonexpansive semigroup, J. Math. Anal. Appl. 279 (2003), no. 2, 372–379.
- [9] R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. on Contr. and Optim. 14 (1976), no. 5, 887–897.
- [10] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in Hilbert space, Math. Progr. 87 (2000), no. 1, 189–202.
- [11] Y. F. Su, Z. M. Wang, and H. K. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616–5628.
- [12] Y. Yao and R. Chen, Strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Appl. Math. Comput. 32 (2010), no. 1, 69–82.

TRUONG MINH TUYEN DEPARTMENT OF MATHEMATICS AND INFORMATICS THAI NGUYEN UNIVERSITY OF SCIENCE THAI NGUYEN, VIET NAM *E-mail address*: tm.tuyentm@gmail.com