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A HYBRID PROJECTION METHOD FOR COMMON ZERO
OF MONOTONE OPERATORS IN HILBERT SPACES

TRUONG MINH TUYEN

ABSTRACT. The purpose of this paper is to introduce some strong conver-
gence theorems for the problem of finding a common zero of a finite family
of monotone operators and the problem of finding a common fixed point
of a finite family of nonexpansive in Hilbert spaces by hybrid projection
method.

1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. We use
the symbols — and — to denote the weak convergence and strong convergence,
respectively.

Consider the problem

(1) find € H such that 0 € 4;(x) foralli=1,2,...,N,

where H is a real Hilbert space, and A4; : D(A;) € H — 2 are monotone
operators. We denote the set of solution of this problem by

S={xeH: 0 Ai(x), Vi=1,2,...,N}.

One of the classical methods for solving equation 0 € A(x) with A is a max-
imal monotone operator in Hilbert space H, is the proximal point algorithm.
The proximal point algorithm generates, for any starting point zp =2 € H, a
sequence {z,} by the rule

(2) Tpy1 = in (xn,) forallm e N,

where {r,,} is a sequence of positive real numbers and J7* = (I +r,A4)"!
is the resolvent of A. Some of them dealt with the weak convergence of the
sequence {x,} generated by (2) and others proved strong convergence theorems
by imposing assumptions on A.

Note that, algorithm (2), can be rewritten as

(3) ZTpt1 — Tp + TnA(xpy1) 20 for alln € N.
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This algorithm was first introduced by Martinet [7]. If ¢p : H — R U {oo} is
a proper lower semicontinuous convex function, the algorithm reduces to

1
Tpt1 = argminyeH{w(y) + 2—Hxn — y|2} for all n € N.
c

Moreover, Rockafellar [9] has given a more practical method which is an inexact
variant of the method:

(4) Tn+€n DTt + cnArpyr for allm €N,

where {e,} is regarded as an error sequence and {c,} is a sequence of positive
regularization parameters. Note that the algorithm (4) can be rewritten as

(5) Tyl = J;i (n +e,) foralln eN,

This method is called inexact proximal point algorithm. It was shown in Rock-
afellar [9] that if e, — 0 quickly enough such that Y |le,|| < oo, then
T, = 2 € H with 0 € Az.

Further, Rockafellar [9] posed an open question of whether the sequence
generated by (2) converges strongly or not. In 1991, Giiler [4] gave an ex-
ample showing that Rockafellar’s proximal point algorithm does not converges
strongly. An example of the authors Bauschke, Matouskova and Reich [2] also
showed that the proximal algorithm only converges weakly but not in norm.

In 2000, Solodov and Svaiter [10] proposed the following algorithm: Choose
any xo € H and o € [0,1). At iteration n, having x,, choose p,, > 0 and find
(yn, vyn) an inexact solution of

0€ A(x) + pn(x — xp),
with tolerance o. Define the sequence {x,} by
Cn={z€H: (z—yn,vy) <0},
Qn={2z€H: (z—xp,20 — ) <0},
Tnt1 = Pc,nq, Zo-
They prove that if the sequence of the regularization parameters u, > ¢ > 0,
then {x,} converges strongly to z* € A~10.

To find a fixed point of a nonexpansive mapping 7" on the closed and convex
subset C of H, that is, find an element p € F(T) = {x € C: Tz =z}, Nakajo
and Takahashi [8] also considered the sequence {z,,} defined by zy € C' and
Yn = QpTn + (1 - an)T:Cn;

Cn={2€C: [[z=ynl <z —zall},
Qn=1{2€C: (z—ap,x0—xy) <0},
ZTnt1 = Po,n@.To, n >0,

(6)

where {a,} C [0,a], with a € [0,1). They proved that the sequence {z,}
generated by (6) converges strongly to Ppr)2o.
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Further, some generalized hybrid projection methods have been introduced
for ~-strictly pseudocontractive mapping T (see, [5], [12], ...) or families of
hemi-relatively and weak relatively nonexpansive mappings (see, [6], [11], ...).

In this paper, base on hybrid projection method, we introduce some new
iterative methods to find a common zero of a finite family of monotone operators
or a common fixed point of a finite family of nonexpansive mappings in a real
Hilbert space. The results in this paper are the extension of the results of
Solodov and Svaiter in [10], Nakajo and Takahashi [8].

2. Preliminaries

Let C' be a nonempty, closed and convex subset of H. We know that for
each x € H, there is unique Pcx € C such that

— Pzl = inf oz —
(7) lz = Poz|| = inf |l —uf,

and the mapping Pc : H — C define by (7) is called metric projection from
H onto C. Moreover, we have

(8) (x — Pox,y— Pex) <0, Ve e H, yeC.
Recall that, a mapping T': C — (' is said to be nonexpansive mapping if
|17z —Ty| < ||lx—yl| for all z,y € C. We denote the set of fixed point of T by
F(T),ie, F(T)={xzeC: Tx =x}.

For an operator A : H — 29 we define its domain, range and graph as
follows:

D(A)={x e H: Az #0},
R(A) =U{Az: z € D(A)},
and
G(A) ={(z,y) e Hx H: x € D(A), y € Az},
respectively. The inverse A~! of A is defined by
x € A™ly, if and only if y € Ax.

The operator A is said to be monotone if, for each z,y € D(A), we have
(u—v,x —y) >0 for all u € Az and v € Ay. We denote by I the identity
operator on H. A monotone operator A is said to be maximal monotone if
there is no proper monotone extension of A or R(I + AA) = H for all A > 0. If
A is monotone, then we can define, for each A > 0, a nonexpansive single-valued
mapping J{! : R(I +\A) — D(A) by

J = (I +24)71,

it is called the resolvent of A. _

A monotone operator A is said to satisfy the range condition if D(A) C
R(I + AA) for all A > 0, where D(A) denotes the closure of the domain of A.
We know that for a monotone operator A which satisfies the range condition,
A710 = F(J{) for all A > 0.
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Remark 2.1. If A is a maximal monotone operator, then A satisfies the range
condition.

The following lemmas will be needed in the sequel for the proof of main
results in this paper.

Lemma 2.2 ([5]). Let H be a real Hilbert space. For all x,y € H andt € [0, 1],
we have

11 =)z +tyl* = (1 = )ll=]|* + tlyll* — £ — )]l — yl|*.

Lemma 2.3. Let H be a real Hilbert space and let {x,} be a sequence in H.
Then, we have the following statements:

i) If &, = x and ||x,|| — ||z|| as n — oo, then x, — x as n — oo.
i) If &, = x as n — oo, then ||z|| < liminf, . ||z

Proof. i) We have
lzn = 2])* = [lon]|* — 2(z, z0) + [|l2]* = 0 as n — oo,

thus z,, — x as n — oo.
ii) We have

lznll - 2]l > (zn, x) — ||£C||2 asn — oo

which implies that |z|| < ||z,||, when n large enough. So, liminf, . ||| >
]|
This completes the proof. (I

Lemma 2.4 ([1]). Let A : D(A) — 2H be a monotone operator. Then
A, >0, and x € H, we have

Jix = T (%x +(1- %)fo).

Lemma 2.5. Let A: D(A) — 2" be a monotone operator. Forr > s > 0,
we have

lz = Jie| < 2l|lz — J e
for allx € R(I +rA)NR(I + sA).
Proof. From Lemma 2.4, we have
o = Jitz|) < llo = Jita| + || Jte — Tl
= o = S| + 1 Ca + (1= 2)J ) - |
< o= el + 1= D)z = Il
<2z — Jl .

This completes the proof. (I
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Lemma 2.6 ([3]). Assume T be a nonexpansive self-map of a closed and convex
subset C' of a Hilbert space H. If T has a fixed point, then I —T is demiclosed;
that is, whenever {x,} is a sequence in C weakly converging to some x € C
and the sequence {(I — T)xy,} strongly converges to some y, it follows that
(I-T)x=y.

3. Main results

The first, we have the following theorem:

Theorem 3.1. Let H be a real Hilbert space. Let C' be a nonempty closed and
convex subset of H. Let A;: D(A;) C H— 2", i=1,2,.... N, be monotone
operators such that S = NN, A0 # 0 and D(A;) € C C NysoR(I + rA;)
for all i = 1,2,...,N. Let {8} and {ri}, i = 1,2,...,N be sequences
of positive real numbers such that {8} C (a,B), with a, B € (0,1) and
min;—1 o . n{inf,{r’}} >r > 0. Then the sequence {z,} generated by zo € C
and

Yn = Tn,
Vo= Bk (L= Bl fw = TR i= 12N
(9) Con={2€C: llya — 2l < lan — 2II},

Qn=1{2€C: (xn—z,20—2,) >0},
Tny1 = Po,nq, %o, n >0,
converges strongly to Psxg.

Proof. Step 1. C,, and @Q,, are closed and convex subsets of C'.
Indeed, we rewrite C,, and @,, in the forms

1
Con=Cn{zeH: (z,—y),2) < §(H~’Cn|\2 — ) 11)},
Qn=Cn{ze H:(xg—xpn,2) <{Tp,T0 —Tp)},

1
respectively. By C is closed and convex and {z € H : (z, —yl, z) < E(Han2 -
luNI2)}, {2z € H : (2 — T, 2) < (wp, 20 — T,)} are closed halfspaces of H, so

C, and @Q,, are closed and convex subsets of C' for all n > 0. It follows that,
Cpn N Qy is closed and convex in H. Hence, the sequence {x,} is well-defined.
Step 2. SC C,,NQ, for all n > 0.
For each u € S, we have
lyn —ull = 183 yn "+ (1 = B3) inyn |
< B llyn = ull + (1= B iyt = Jimu]
< B llyn ™ =l + (1 =By~ —

= llyn " — ul
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< lyn = ull = llzn — .
By the definition of C,,, we get u € C,,. Hence,
(10) S c C,, for all n > 0.

Now, we will show that S C @, for all n > 0. Indeed, obviously S C Qg. So
u € Cp N Qo and from 1 = Pcy,nQ, %o, We obtain that

(x1 —u, g — 1) > 0.
Thus, u € Q1. By induction, we get u € @, for all n > 0. Hence,
(11) S CQy foralln>0.

From (10) and (11), we have S C C,, N Q.
Step 3. {x,} is bounded.
Let 2* = Psxg € C,, N Q. Since 2p41 = Po,n@, %o, we have
(12) |2rn+1 — zol| < ||wo — 2*|| for all n > 0,
which implies that the sequence {z,} is bounded.
Step 4. lim, ||Znt1 — zn|| = 0.
Since Tn4+1 = Pc,,nQ, T0, Tnt+1 € Qn. By the definition of @),,, we have
(13) (Tn — Tny1,%0 — ) > 0,
which implies that
[ €41 = 2oll = [[2n — -
So, {||#n —x0l|} is nondecresing sequence, which combine with the boundedness
of the sequence {z,,}, therefore, there exists the finite limit lim,—, o ||z — o] =
d.
From (13), we have
|41 — anQ = [[(@n41 — x0) — (@0 — z0)
= zns1 = @oll* = 2(znt1 — o, 20 — z0) + |25 — 20|
= [l2n41 = 2ol* = [l#n — ol|” = 2(nt1 — ns 20 — 20)

< Nns1 — xo|* = |2 — 20]|* = d* —d* =0 asn — oo.

Thus,
(14) Jim s =z = 0.
Step 5. limy o0 |2 — ¥ || = 0.

Indeed, by z,+1 € Cyp, we get
lznt1 =y I| < l|#ng1 — 20l =0 asn — oo,
which combine with (14) and the following estimate

ln =y | < llass — g | + l2nsn — 2all,
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therefore
. _ LN
(15) Tl — 5l = 0.
Step 6. lim, oo |ly5 ! — Jinyi t| =0 foralli=1,2,...,N.

Let {x,, } be a subsequence of {z,} such that

limsup [ly, " = Jinyp 'l = Hm gt = Jinyn

n—oo

and let {zy, } be a subsequence of {zy, } such that

limsup ||z, —z*|| = hm ||:L'nk — .
k—ro0
We have
[2n, =2 || < lln,, — oy, | + ||ynk — "
< an, =y, |+ lymy = 7]
< ey — 9 1+ Iy, "
= |z, = Yy, I+ 20y, — 2.
Therefore,

lim ||z, — 2% = lim |ly, —a*||, i=1,2,...,N.
I—o0 ¢ l—o00 ky
Next, by Lemma 2.2 and (9),

i, — 2717 = By, it — 12 4 (1 = B iy, it — ")

— (1= 8,8, Iy} —Jm,clyn,fll2
<y, =2 1? = (1= B, )8, e [ —Jmklynkl I?
< gy — I = (1= B )8 92 — Tome I
Hence,
o1 = B — i, i 12 < g, — 2712 — N, — 2712 >0,
as | — oo for all i = 1,2,...,N. So, ||y%;11 — Ji e, ynk1|| — 0, which implies
that

lim sup ||y’fz_1 —Ji nyn 1” =0.

n—oo

Thus, limy, e [|yit — Jinyi | =0foralli=1,2,..., N.
Step 7. lim,, o x, = Psxg.
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We show that ||z, — J; pzn| — 0 for all ¢ =1,2,..., N. Indeed, in the case
that i = 1, ||zn, — J1n@n| = |1¥2 — J1.n90|| — 0. In the case that i = 2, we have

[#n — J2n@all < 2w = ynll + lyn = Jom¥nll + 1208 — J2m®n|
<2z = yull + l1yn — J2.nval
< 2”%01 - J1,ny2|| + Hyrlz - Jz,nyill — 0.

So, we get ||z, — Janxy] — 0. Similarly, we obtain that ||z, — Jinzn] — 0
for all i = 3,4,...,N. By Lemma 2.5, ||z, — JA 2, || < 2|z, — JinZnl|. So,

lzn — JA2,| — 0 foralli=1,2,...,N.
Since, {z,} is bounded, there exists a subsequence {x,, } of {x,} such that
Ty, — 21 as k — oo. From ||z, — JAx,, || — 0 for all i = 1,2,..., N and

Lemma 2.6, we get x7 € S.
By 2* = Psxg, 2t € S, (12) and Lemma 2.3, we have

o — *1) < llzo — 1| < lim n 12, — o]
k—o0
< limsup ||zn, — xo| < ||xo — "]
k— oo

From the definition of z*, it follows that 2f = 2*. Thus, ||z, — 2ol — [|2* — 20|
and by Lemma 2.3, we get x,,, — «* as k — oo. Form the uniqueness of z*,
we obtain that z,, — * as n — oo.

This completes the proof. (I

Remark 3.2. If N = 1, we can choose the sequence {3,,} C [0,a), witha € [0,1).
So, we have the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let C be a nonempty closed and
conver subset of H. Let A: D(A) C H — 2" be a monotone operator such

that S = A710 # 0 and D(A) C C C Ny>oR(I +rA). Let {B8,} and {r,} be
sequences of positive real numbers such that {8,} C [0,a), with a € [0,1) and
inf,{rn} >r > 0. Then the sequence {x,} generated by xo € C' and

Con={2€H: |lyn — 2| <llzn — 2|},
Qn={z€H: (x, — 2,20 — xpn) > 0},
Tn4+1 = Pcanniﬁoa n >0,

(16)

converges strongly to Psxg.

Remark 3.4. Theorem 3.1 is more general than the result of Solodov and Svaiter
in [10].

Next, we give strong convergence theorems to find a common fixed point of
nonexpansive mapping. By the careful analysis of the proof of Theorem 3.1,
we can obtain the following results for the problem of finding a common fixed
point of a finite family of nonexpasive mappings. Because its proof is much
simpler than that of Theorem 3.1, we omit it proof.
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Theorem 3.5. Let H be a real Hilbert space. Let C be a monempty closed
and convex subset of H. LetT; : C — C, 1 =1,2,..., N, be nonexpansive
mappings from C into itself such that S = NN, F(T;) # 0. Let {B8.} be se-
quences of positive real numbers such that {85} C (a, B) with o, B € (0,1) for
alli=1,2,...,N. Then the sequence {x,} generated by xo € C and

%Oz = Tn,
Yl =Byt (1 - BTyt i =1,2,...,N
(17) Cn={2€C: |yf — 2| < |zn — 2|},

Qn={z€C: (x, —z,20 — xp) >0},
Tpy1 = Po,nq, %o, n >0,
converges strongly to Psxg.

In the case N = 1, we have the following corollary:

Corollary 3.6 (Theorem 3.4, in [8]). Let H be a real Hilbert space and let C' be
a nonempty closed and convex subset of H. Let T : C'— C be a nonexpansive
mapping from C into itself such that S = F(T) # 0. Let {B,} be a sequence of
positive real numbers such that {8,} C [0,a), with a € [0,1). Then the sequence
{z,} generated by xo € C and

Yn = BnTn + (1 - ﬂn)Txn;

Cn={2€C: |lyn — 2l < lln — 2|},

Qn={2€C: (z, —2z,x0— xpn) >0},

Tn+1 = Pc,ng,To, n >0,

(18)

converges strongly to Psxg.

Remark 3.7. The Theorem 3.5 is more general than the result of Nakajo and
Takahashi in [8].
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