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BUSY PERIOD DISTRIBUTION OF

A BATCH ARRIVAL RETRIAL QUEUE

Jeongsim Kim

Abstract. This paper is concerned with the analysis of the busy period
distribution in a batch arrival MX/G/1 retrial queue. The expression for
the Laplace-Stieltjes transform of the length of the busy period is well
known, but from this expression we cannot compute the moments of the
length of the busy period by direct differentiation. This paper provides
a direct method of calculation for the first and second moments of the
length of the busy period.

1. Introduction

Retrial queues are queueing systems in which arriving customers who find
all servers occupied may retry for service again after a random amount of time.
Retrial queues have been widely used to model many problems/situations in
telephone systems, call centers, telecommunication networks, computer net-
works and computer systems, and in daily life. For an overview regarding
retrial queues, refer to the surveys [8, 10, 11, 12]. For further details, refer to
the books [4, 9], and the bibliographies [1, 2, 3].

This paper considers a single server batch arrival retrial queue. The single
server batch arrival retrial queues are characterized by the following features:
If the server is idle when a batch of customers (called primary customers) arrive
from outside the system, then one customer of that batch begins to be served
immediately while the other customers join a retrial group, called an orbit. If
the server is busy when a batch of customers arrive from outside the system,
then all the customers of that batch join the orbit. All the customers in the
orbit behave independently of each other. If the server is idle when a customer
from the orbit attempts service, this customer receives service immediately.
Otherwise the customer comes back to the orbit immediately and repeats the

Received May 6, 2016.
2010 Mathematics Subject Classification. 60K25.

Key words and phrases. retrial queue, batch arrivals, busy period.
This work was supported by the intramural research grant of Chungbuk National Univer-

sity in 2015 and Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (2014R1A1A4A01003813).

c©2017 Korean Mathematical Society

425



426 J. KIM

retrial process. Thus only the external arrivals take place in batches and the
retrials are conducted singly.

In this paper we are concerned with the analysis of the busy period distri-
bution in a batch arrival MX/G/1 retrial queue. For the batch arrival retrial
queue, the busy period is defined as the period which starts when a batch of
primary customers arrives at an empty system and ends at the next departure
epoch when the system is empty again. The busy period distribution for the
MX/G/1 retrial queue was studied by Falin [7], who introduced the concept
of k-busy period. For the batch arrival retrial queue a k-busy period is defined
as the period which starts when a batch of k primary customers arrives at
an empty system and ends at the next departure epoch when the system is
empty again. Falin [7] derived the expression for the Laplace-Stieltjes trans-
form (LST) of the length of the k-busy period and from this he obtained the
LST of the length of the busy period. The expression for the LST of the length
of the busy period (which is shown in formula (1)) has practical limitations.
For instance, we cannot compute the moments of the length of the busy period
by direct differentiation. Falin [7] obtained only the first moment of the length
of the busy period. Falin [6] studied the same problem as in Falin [7] for the
single arrival M/G/1 retrial queue. Artalejo and Lopez-Herrero [5] obtained
closed-form expressions for the first and second moments of the length of the
busy period in the single arrival M/G/1 retrial queue.

In this paper, by a direct method of calculation we obtain explicit expressions
for the first and second moments of the length of the busy period in the batch
arrival MX/G/1 retrial queue. This paper generalizes the result of Artalejo
and Lopez-Herrero [5] to the batch arrival retrial queue.

The paper is organized as follows. In Section 2, we describe our model in
detail and present an equation for the LST of the length of the busy period. In
Section 3, we obtain explicit formulas for the first and second moments of the
length of the busy period.

2. An equation for the length of the busy period

We consider theMX/G/1 retrial queue where customers arrive from outside
the system in batches according to a Poisson process with rate λ. The batch
sizes are independent and identically distributed (i.i.d.) random variables with
a generic random variable B and common distribution P(B = k) = bk, k =
1, 2, . . .. Let b(z) =

∑∞
k=1 bkz

k, |z| ≤ 1, be the probability generating function

of the batch size distribution and b(k) be the kth factorial moment of the batch
size, i.e., b(k) = E[B(B−1) · · · (B−k+1)] = dk

dzk b(z)
∣

∣

z=1−
. The service times are

i.i.d. random variables with a generic random variable S. Let β(s) = E[e−sS ],
s ≥ 0, be the LST of the service time distribution and β(k) be the kth moment

of the service time, i.e., β(k) = E[Sk] = (−1)k dk

dsk
β(s)

∣

∣

s=0+
. The inter-retrial

time, i.e., the length of the time interval between two consecutive attempts
made by a customer in the orbit, is exponentially distributed with mean ν−1.
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Figure 1. A busy period in a retrial queue.

The arrival process, the batch sizes, the service times, and the inter-retrial
times are assumed to be mutually independent. The offered load ρ is defined
as ρ = λb(1)β(1). It is assumed that ρ < 1 for stability of the system.

As defined earlier, the busy period is the interval from the moment of a batch
arrival of primary customers at an empty system (the server is idle and there is
no customer in the orbit) to the moment that the system becomes empty for the
first time. The busy period defined in this way consists of alternating service
periods and periods during which the server is idle and there are customers in
the orbit, as illustrated in Figure 1.

Let L be the length of a busy period and π(s) = E[e−sL] be its LST. Falin [7]
obtained the following expression for the LST of the length of the busy period
(see equation (10) of [7]):

π(s) =
s+ λ

λ
−
ν

λ

[

∫ π∞(s)

0

exp
{

−

∫ u

0

s+ λ− λ b(v)
v
β(s+ λ− λb(v))

ν[β(s+ λ− λb(v)) − v]
dv

}

×
1

ν[β(s + λ− λb(u))− u]
du

]−1

,(1)

where π∞(s) is the LST of the length of the busy period in the corresponding
standard MX/G/1 queue, i.e., for s ≥ 0, π∞(s) is the unique solution of the
functional equation z = β(s + λ − λb(z)) on the interval 0 ≤ z ≤ 1. The
above expression provides a theoretical solution, but it has serious practical
limitations. For instance, it is even impossible to obtain the moments of L
through direct differentiation. Falin [7] obtained only the first moment of the
length of the busy period.

By a direct method of calculation we can obtain explicit expressions for the
first and second moments of the length of the busy period, as will be shown
in Section 3. In order to get this, we will need an equation for the LST of the
length of the busy period. At time t, let N(t) be the number of customers in
the orbit and C(t) be the number of customers being served (i.e., C(t) = 1 or
0 according as the server is busy or idle). Assume that a busy period starts at
time 0, i.e., a batch of customers arrive to the empty system at time 0. Hence
the length of the busy period, L, is written as

L = inf{t > 0 : N(t) = C(t) = 0}.
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Let π(k)(s) = E[e−sL | N(0) = k − 1], i.e., π(k)(s) is the LST of the length of
the k-busy period. Moreover, let

ϕ
(k)
0 (z, s) =

∞
∑

n=1

zn
∫ ∞

0

e−st
P(L > t,N(t) = n,C(t) = 0 | N(0) = k − 1)dt.

Falin [7] derived the following differential equation for ϕ
(k)
0 (z, s) (see equation

(8) of [7]):

π(k)(s) + ν(z − β(s+ λ− λb(z)))
∂

∂z
ϕ
(k)
0 (z, s)

+ (s+ λ− λb̃(z)β(s+ λ− λb(z)))ϕ
(k)
0 (z, s) = zk−1β(s+ λ− λb(z)),

where b̃(z)= b(z)
z

=
∑∞

k=0 bk+1z
k. From this equation and π(s)=

∑∞
k=1 bkπ

(k)(s),
we obtain the following proposition. This plays a crucial role in obtaining the
moments of the length of the busy period.

Proposition 1. The LST π(s) satisfies the following equation:

π(s) = ν(β(s + λ− λb(z))− z)
∂

∂z
Ψ(z, s)(2)

− (s+ λ− λb̃(z)β(s+ λ− λb(z)))Ψ(z, s) + b̃(z)β(s+ λ− λb(z)),

where Ψ(z, s) =
∑∞

n=1 z
n
∫∞

0
e−st

P(L > t,N(t) = n,C(t) = 0)dt.

3. The first two moments of the length of the busy period

In this section we obtain the first and second moments of the length of the
busy period by a direct method of calculation with the use of Proposition 1.
Let π(k) be the kth moment of the length of the busy period, i.e.,

π(k) = E[Lk] = (−1)k
∂k

∂sk
π(s)

∣

∣

∣

s=0+
.

In order to obtain the moments of L, we introduce the following moments: for
i = 0, 1, . . . , j = 0, 1, . . .,

Ψ(i,j) = (−1)j
∂i+j

∂zi∂sj
Ψ(z, s)

∣

∣

∣

z=1−,s=0+
.

Also, we need the following lemma.

Lemma 1. For s > 0, there exists a unique z(s) ∈ (0, 1) such that

z(s) = β(s+ λ− λb(z(s))).

Moreover, lims→0+ z(s) = 1.

Proof. For fixed s > 0, let

h(s, z) = z − β(s+ λ− λb(z)), 0 ≤ z ≤ 1.

Then h(s, 0) = −β(s+ λ) < 0 and h(s, 1) = 1− β(s) > 0. Hence by the inter-
mediate value theorem, there exists z ∈ (0, 1) such that h(s, z) = 0, meaning
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that z = β(s+ λ− λb(z)). We note that since 0 < d
dz
β(s + λ − λb(z)) < 1 for

0 < z < 1, h(s, z) is strictly increasing in z on (0, 1). Thus the first assertion
is proved. Next we prove the second assertion. Since β(λ − λb(z)) is strictly
increasing and convex in z on [0, 1) and d

dz
β(λ− λb(z))

∣

∣

z=1−
= ρ < 1, we have

β(λ − λb(z)) > z for 0 ≤ z < 1.

Let z0 be fixed in (0, 1). Then lims→0+ h(s, z0) < 0. This implies that z0 <
z(s) < 1 for sufficiently small s. Hence

z0 ≤ lim inf
s→0+

z(s) ≤ lim sup
s→0+

z(s) ≤ 1.

Since z0 is arbitrary, lims→0+ z(s) = 1. �

We begin the calculation of E[L]. First, take the partial derivative of (2)
with respect to s. This gives

π′(s) = νβ′(s+ λ− λb(z))
∂

∂z
Ψ(z, s) + ν(β(s + λ− λb(z))− z)

∂2

∂z∂s
Ψ(z, s)

− (1− λb̃(z)β′(s+ λ− λb(z)))Ψ(z, s)

− (s+ λ− λb̃(z)β(s+ λ− λb(z)))
∂

∂s
Ψ(z, s) + b̃(z)β′(s+ λ− λb(z)).(3)

Putting z = z(s) in (3) and using Lemma 1 yields

π′(s) = νβ′(s+ λ− λb(z(s)))φ10(z(s), s)

− (1 − λb̃(z(s))β′(s+ λ− λb(z(s))))φ00(z(s), s)

− (s+ λ− λb(z(s)))φ01(z(s), s) + b̃(z(s))β′(s+ λ− λb(z(s))),(4)

where φij(z, s) = ∂i+j

∂zi∂sj
Ψ(z, s). Letting s → 0+ in (4) and using the second

assertion of Lemma 1 gives

E[L] = νβ(1)Ψ(1,0) + (1 + λβ(1))Ψ(0,0)(5)

+ lim
s→0+

(s+ λ− λb(z(s)))φ01(z(s), s) + β(1).

Now we will show that lims→0+(s+ λ− λb(z(s)))φ01(z(s), s) = 0. For s ≥ 0,

0 ≤ −sφ01(z(s), s) = −

∫ s

0

φ01(z(s), s)du

≤ −

∫ s

0

φ01(z(s), u)du

= φ00(z(s), 0)− φ00(z(s), s).

Thus

lim
s→0+

sφ01(z(s), s) = 0.(6)
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We note that

lim
s→0+

s+ λ− λb(z(s))

s
= 1− λE[B]

−E[S]

1− ρ
=

1

1− ρ
.

From this and (6), we have

lim
s→0+

(s+ λ− λb(z(s)))φ01(z(s), s) = 0,

and so (5) becomes

E[L] = νβ(1)Ψ(1,0) + (1 + λβ(1))Ψ(0,0) + β(1).(7)

In order to find Ψ(1,0), take the partial derivative of (2) with respect to z.
Following the same procedure as the above, we obtain

Ψ(1,0) =
b(1) − 1 + ρ

ν(1− ρ)
(λΨ(0,0) + 1).(8)

Substituting (8) into (7), we get

E[L] =
1

1− ρ
Ψ(0,0) +

b(1)β(1)

1− ρ
.(9)

Therefore, in order to obtain E[L], we only need to find Ψ(0,0). The expression
for Ψ(0,0) can be easily obtained from the following lemma.

Lemma 2. We have

Ψ(z, 0) =
1

λ
exp

{λ

ν

∫ z

0

1− b̃(x)β(λ − λb(x))

β(λ − λb(x)) − x
dx

}

−
1

λ
.(10)

Proof. By Proposition 1, we get

∂

∂z
Ψ(z, 0) +

λ

ν

1− b̃(z)β(λ− λb(z))

z − β(λ− λb(z))
Ψ(z, 0) +

1− b̃(z)β(λ− λb(z))

ν(z − β(λ − λb(z)))
= 0.

Let f(z) = Ψ(z, 0) + 1
λ
. Then

d

dz
f(z) +

λ

ν

1− b̃(z)β(λ− λb(z))

z − β(λ− λb(z))
f(z) = 0.

Note that f(0) = 1
λ
. Solving the above differential equation, we have

f(z) =
1

λ
exp

{λ

ν

∫ z

0

1− b̃(x)β(λ − λb(x))

β(λ− λb(x)) − x
dx

}

.

Therefore, (10) follows immediately from Ψ(z, 0) = f(z)− 1
λ
. �

Putting z = 1 in (10), we get

Ψ(0,0) =
1

λ
exp

{λ

ν

∫ 1

0

1− b̃(x)β(λ − λb(x))

β(λ − λb(x)) − x
dx

}

−
1

λ
.(11)
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Finally, substituting (11) into (9), we obtain the expression for the first moment
E[L]:

E[L] =
1

λ(1 − ρ)
exp

{λ

ν

∫ 1

0

1− b̃(x)β(λ − λb(x))

β(λ − λb(x)) − x
dx

}

−
1

λ
,(12)

which is consistent with the result of Falin [7] (refer to Theorem 2 of [7]).
Next, we will obtain the second moment E[L2]. To do this, take the partial

derivative of (2) with respect to s twice. Following the same procedure as that
used to derive (7), we have

E[L2] = β(2)(λΨ(0,0) + 1) + νβ(2)Ψ(1,0) + 2(1 + λβ(1))Ψ(0,1) + 2νβ(1)Ψ(1,1).

Substituting (8) into the above equation yields

E[L2] =
b(1)β(2)

1− ρ
(λΨ(0,0) + 1) + 2(1 + λβ(1))Ψ(0,1) + 2νβ(1)Ψ(1,1).(13)

Thus, in order to obtain E[L2], we need to find Ψ(0,1) and Ψ(1,1). First, to find
Ψ(1,1), take the partial derivative of (2) with respect to z and then with respect
to s. Following the same procedure as that used to derive (7) and using (8),
we get

Ψ(1,1) =
1

ν(1 − ρ)

{ (b(1) − 1 + ρ)(1 + λβ(1) + λνb(1)β(2))

ν(1 − ρ)
+ λb(1)β(2)

− (1− b(1))β(1)
}

(λΨ(0,0) + 1) +
λ(b(1) − 1 + ρ)

ν(1− ρ)
Ψ(0,1) +

β(1)

1− ρ
Ψ(2,0).(14)

Similarly, take the partial derivative of (2) with respect to z twice and follow
the same procedure as the above, to obtain

Ψ(2,0) =
1

2ν(1− ρ)

(2λ(1− ρ− b(1))2 + νρb(2) + νλ2(b(1))3β(2)

ν(1− ρ)

+ 2(1− ρ)(1− b(1)) + b(2)
)

(λΨ(0,0) + 1).

Substituting this into (14) and then substituting the resulting expression for
Ψ(1,1) into (13), we obtain

E[L2] =
1

ν(1− ρ)3
{

νb(1)β(2) + νb(2)(β(1))2 − 2β(1)(1− ρ− b(1))
}

(λΨ(0,0) + 1)

+
2

1− ρ
Ψ(0,1).(15)

Therefore, in order to obtain E[L2], we only need to find Ψ(0,1). The expression
for Ψ(0,1) is given by the following lemma.

Lemma 3. We have

Ψ(0,1) =

∫ 1

0

exp
{λ

ν

∫ 1

x

1− b̃(u)β(λ − λb(u))

β(λ − λb(u))− u
du

}

g(x)dx,(16)
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where

g(x) =
1

ν(β(λ − λb(x)) − x)

[ 1

λ(1 − ρ)
exp

{λ

ν

∫ 1

0

1− b̃(u)β(λ− λb(u))

β(λ− λb(u))− u
du

}

+ exp
{λ

ν

∫ x

0

1− b̃(u)β(λ − λb(u))

β(λ− λb(u))− u
du

}((1−b(x))β′(λ−λb(x))

β(λ−λb(x))−x
−
1

λ

)]

.

Proof. Recall that Ψ(0,1) = − ∂
∂s
Ψ(z, s)

∣

∣

∣

z=1−,s=0+
. Let ψ0(z, s) = − ∂

∂s
Ψ(z, s)

and ψ(z) = ψ0(z, 0). Taking the partial derivative of (2) with respect to s and
putting s = 0+, we obtain

E[L] + ν(z − β(λ− λb(z)))
d

dz
ψ(z) + νβ′(λ− λb(z))

∂

∂z
Ψ(z, 0)

+ λ(1− b̃(z)β(λ− λb(z)))ψ(z)− (1− λb̃(z)β′(λ− λb(z)))Ψ(z, 0)

= −b̃(z)β′(λ − λb(z)).

Using Lemma 2 and (12), we obtain that the above equation becomes

d

dz
ψ(z) +

λ(1− b̃(z)β(λ− λb(z)))

ν(z − β(λ− λb(z)))
ψ(z) = g(z).

Since ψ(0) = 0, we have

ψ(z) =

∫ z

0

exp
{λ

ν

∫ z

x

1− b̃(u)β(λ− λb(u))

β(λ − λb(u))− u
du

}

g(x)dx.

Since Ψ(0,1) = ψ(1), we have (16). �

Finally, substituting (11) and (16) into (15), we obtain the expression for
the second moment E[L2]. In summary, we have the following theorem.

Theorem 1. For the MX/G/1 retrial queue, the first and second moments of

the length of the busy period are given by

E[L] =
1

λ(1 − ρ)
exp

{λ

ν

∫ 1

0

1− b̃(x)β(λ − λb(x))

β(λ − λb(x))− x
dx

}

−
1

λ
,

E[L2] =
1

ν(1 − ρ)3
{

νb(1)β(2) + νb(2)(β(1))2 − 2β(1)(1 − ρ− b(1))
}

× exp
{λ

ν

∫ 1

0

1− b̃(x)β(λ − λb(x))

β(λ− λb(x)) − x
dx

}

+
2

1− ρ

∫ 1

0

exp
{λ

ν

∫ 1

x

1− b̃(u)β(λ − λb(u))

β(λ− λb(u))− u
du

}

g(x)dx,

where g(x) is given by Lemma 3.

In the case of single arrivals, Theorem 1 is reduced to the following corollary.
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Corollary 1. For the M/G/1 retrial queue, the first and second moments of

the length of the busy period are given by

E[L] =
1

λ(1 − ρ)
exp

{λ

ν

∫ 1

0

1− β(λ− λx)

β(λ− λx) − x
dx

}

−
1

λ
,(17)

E[L2] =
1

1− ρ
exp

{λ

ν

∫ 1

0

1− β(λ− λu)

β(λ− λu)− u
du

}[ 1

(1− ρ)2

(2ρβ(1)

ν
+ β(2)

)

−

∫ 1

0

2

ν(β(λ − λx)− x)

( 1

λ
−

(1 − x)β′(λ− λx)

β(λ− λx) − x

−
1

λ(1 − ρ)
exp

{λ

ν

∫ 1

x

1− β(λ − λu)

β(λ − λu)− u
du

})

dx
]

.(18)

It is noticed that (17) and (18) are consistent with formulas (26) and (38)
of Artalejo and Lopez-Herrero [5].
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