COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASS OF MEROMORPHIC AND BI-UNIVALENT FUNCTIONS

Safa Salehian and Ahmad Zireh

Abstract

In this paper, we introduce and investigate an interesting subclass of meromorphic bi-univalent functions defined on $\Delta=\{z \in$ $\mathbb{C}: 1<|z|<\infty\}$. For functions belonging to this class, estimates on the initial coefficients are obtained. The results presented in this paper would generalize and improve some recent works of several earlier authors.

1. Introduction

Let Σ be the family of meromorphic functions f of the form

$$
\begin{equation*}
f(z)=z+b_{0}+\sum_{n=1}^{\infty} b_{n} \frac{1}{z^{n}} \tag{1.1}
\end{equation*}
$$

that are univalent in $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$. Since $f \in \Sigma$ is univalent, it has an inverse f^{-1} that satisfy

$$
f^{-1}(f(z))=z(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w(M<|w|<\infty, M>0) .
$$

Furthermore, the inverse function f^{-1} has a series expansion of the form

$$
\begin{equation*}
f^{-1}(w)=w+\sum_{n=0}^{\infty} B_{n} \frac{1}{w^{n}} \tag{1.2}
\end{equation*}
$$

where $M<|w|<\infty$. A simple calculation shows that the function f^{-1}, is given by

$$
\begin{equation*}
f^{-1}(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{1}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots \tag{1.3}
\end{equation*}
$$

A function $f \in \Sigma$ is said to be meromorphic bi-univalent if $f^{-1} \in \Sigma$. The family of all meromorphic bi-univalent functions is denoted by $\Sigma_{\mathfrak{B}}$.

Received June 3, 2016; Revised September 8, 2016.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
Key words and phrases. meromorphic functions, meromorphic bi-univalent functions, coefficient estimates.

Estimates on the coefficient of meromorphic univalent functions were widely investigated in the literature; for example, Schiffer [8] obtained the estimate $\left|b_{2}\right| \leq 2 / 3$ for meromorphic univalent functions $f \in \Sigma$ with $b_{0}=0$ and Duren [1] proved that $\left|b_{n}\right| \leq 2 /(n+1)$ for $f \in \Sigma$ with $b_{k}=0,1 \leq k \leq n / 2$.

For the coefficients of inverses of meromorphic univalent functions, Springer [10] proved that

$$
\left|B_{3}\right| \leq 1 \text { and }\left|B_{3}+\frac{1}{2} B_{1}^{2}\right| \leq \frac{1}{2}
$$

and conjectured that

$$
\left|B_{2 n-1}\right| \leq \frac{(2 n-2)!}{n!(n-1)!}, \quad n=1,2, \ldots
$$

In 1977, Kubota [6] proved that the Springer conjecture is true for $n=3,4,5$ and subsequently Schober [9] obtained a sharp bounds for the coefficients $B_{2 n-1}, 1 \leq n \leq 7$.

Several researchers such as (for example) Halim et al. [4], Janani and Murugusundaramoorthy [5] and Hamidi et al. [2] introduced and investigated new subclasses of meromorphically bi-univalent functions.

Recently T. Panigrahi [7] introduced the following two subclasses of the meromorphic bi-univalent function and obtained non sharp estimates on the initial coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ as follows.

Definition 1.1 ([7]). A function $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1.1) is said to be in the class $M_{\Sigma_{\mathfrak{B}}}(\alpha, \lambda)$, if the following conditions are satisfied:

$$
\left|\arg \left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}\right|<\frac{\alpha \pi}{2}(0<\alpha \leq 1, \lambda \geq 1, z \in \Delta)
$$

and
$\left|\arg \left\{\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right\}\right|<\frac{\alpha \pi}{2}(0<\alpha \leq 1, \lambda \geq 1, w \in \Delta)$,
where the function g is the inverse of f given by (1.3).
Theorem 1.2. Let $f(z)$ given by (1.1) be in the class $M_{\Sigma_{\mathfrak{B}}}(\alpha, \lambda)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq \frac{2 \alpha}{\lambda} \\
\left|b_{1}\right| \leq \frac{\alpha}{2 \lambda-1} \sqrt{(\alpha-2)^{2}+\frac{4 \alpha^{2}}{\lambda^{2}}}
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq \frac{2 \alpha}{3(3 \lambda-2)}\left[2\left\{\frac{6 \alpha^{2}-\lambda^{2}\left(\alpha^{2}-3 \alpha+2\right)}{3 \lambda^{2}}\right\}+3-2 \alpha\right]
$$

Definition 1.3 ([7]). A function $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1.1) is said to be in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$, if the following conditions are satisfied:

$$
\operatorname{Re}\left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\beta(0 \leq \beta<1, \lambda \geq 1, z \in \Delta)
$$

and

$$
\operatorname{Re}\left\{\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right\}>\beta(0 \leq \beta<1, \lambda \geq 1, w \in \Delta)
$$

where the function g is the inverse of f given by (1.3).
Theorem 1.4. Let $f(z)$ given by (1.1) be in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq \frac{2(1-\beta)}{\lambda} \\
\left|b_{1}\right| \leq \frac{(1-\beta)}{2 \lambda-1} \sqrt{1+\frac{4(1-\beta)^{2}}{\lambda^{2}}}
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq \frac{2(1-\beta)}{3(3 \lambda-2)}\left[1+\frac{4(1-\beta)^{2}}{\lambda^{2}}\right]
$$

The object of the present paper is to introduce a new subclass of the function class $\Sigma_{\mathfrak{B}}$ and obtain estimates on the initial coefficients for functions in this new subclass which improve Theorem 1.2 and Theorem 1.4.

2. Coefficient bounds for the function class $M_{\Sigma_{\mathfrak{B}}}^{\boldsymbol{h}, \boldsymbol{p}}(\lambda)$

In this section, we introduce and investigate the general subclass $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$ $(\lambda \geq 1)$.

Definition 2.1. Let the functions $h, p: \Delta \rightarrow \mathbb{C}$ be analytic functions and

$$
h(z)=1+\frac{h_{1}}{z}+\frac{h_{2}}{z^{2}}+\frac{h_{3}}{z^{3}}+\cdots, \quad p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{2}}+\cdots,
$$

such that

$$
\min \{\operatorname{Re}(h(z)), \operatorname{Re}(p(z))\}>0, z \in \Delta .
$$

A function $f \in \Sigma_{\mathfrak{B}}$ given by (1.1) is said to be in the class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$, if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma_{\mathfrak{B}}, \lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \in h(\Delta)(\lambda \geq 1, z \in \Delta) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \in p(\Delta)(\lambda \geq 1, w \in \Delta) \tag{2.2}
\end{equation*}
$$

where the function g is the inverse of f given by (1.3).
Remark 2.2. There are many selections of the functions $h(z)$ and $p(z)$ which would provide interesting subclasses of the meromorphic function class Σ. For example,
(1) If we let $h(z)=p(z)=\left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\alpha}=1+\frac{2 \alpha}{z}+\frac{2 \alpha^{2}}{z^{2}}+\frac{2 \alpha^{3}}{z^{3}}+\cdots(0<\alpha \leq$ $1, z \in \Delta)$, it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1.

Now if $f \in M_{\Sigma_{\mathfrak{s}}}^{h, p}(\lambda)$, then

$$
\begin{aligned}
& f \in \Sigma_{\mathfrak{B}} \\
& \left|\arg \left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}\right|<\frac{\alpha \pi}{2}(0<\alpha \leq 1, \lambda \geq 1, z \in \Delta) \\
& \left|\arg \left\{\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right\}\right|<\frac{\alpha \pi}{2}(0<\alpha \leq 1, \lambda \geq 1, w \in \Delta) .
\end{aligned}
$$

Therefore in this case, the class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$ reduce to class $M_{\Sigma_{\mathfrak{B}}}(\alpha, \lambda)$ in Definition 1.1.
(2) If we let $h(z)=p(z)=\frac{1+\frac{1-2 \beta}{1-\frac{1}{z}}}{1-2}=1+\frac{2(1-\beta)}{z}+\frac{2(1-\beta)}{z^{2}}+\frac{2(1-\beta)}{z^{3}}+\cdots(0 \leq$ $\beta<1, z \in \Delta)$, it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1.

Now if $f \in M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$, then
$f \in \Sigma_{\mathfrak{B}}, \operatorname{Re}\left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\beta(0 \leq \beta<1, \lambda \geq 1, z \in \Delta)$
and

$$
\operatorname{Re}\left\{\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right\}>\beta(0 \leq \beta<1, \lambda \geq 1, w \in \Delta)
$$

Therefore in this case, the class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$ reduce to class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$ in Definition 1.3.

Now, we derive the estimates of the coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ for class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$.
Theorem 2.3. Let the $f(z)$ given by (1.1) is said to be in the class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda)$. Then

$$
\begin{gather*}
\left|b_{0}\right| \leq \min \left\{\sqrt{\frac{\left|h_{1}\right|^{2}+\left|p_{1}\right|^{2}}{2 \lambda^{2}}}, \sqrt{\frac{\left|h_{2}\right|+\left|p_{2}\right|}{2 \lambda}}\right\} \tag{2.3}\\
\left|b_{1}\right| \leq \min \left\{\frac{\left|h_{2}\right|+\left|p_{2}\right|}{4(2 \lambda-1)}, \frac{1}{(2 \lambda-1)} \sqrt{\frac{\left|h_{2}\right|^{2}+\left|p_{2}\right|^{2}}{8}+\frac{\left(\left|h_{1}\right|^{2}+\left|p_{1}\right|^{2}\right)^{2}}{16 \lambda^{2}}}\right\} \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|b_{2}\right| \leq \frac{1}{3(3 \lambda-2)}\left[\frac{\left|p_{1}\right|^{3}}{\lambda^{2}}+\frac{2(2 \lambda-1)\left|h_{3}\right|+\lambda\left|p_{3}\right|}{5 \lambda-2}\right] \tag{2.5}
\end{equation*}
$$

Proof. First of all, we write the argument inequalities in (2.1) and (2.2) in their equivalent forms as follows:

$$
\begin{equation*}
\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=h(z)(z \in \Delta) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=p(w)(w \in \Delta) \tag{2.7}
\end{equation*}
$$

respectively, where functions $h(z)$ and $p(w)$ satisfy the conditions of Definition 2.1.

Furthermore, the functions $h(z)$ and $p(w)$ have the forms:

$$
h(z)=1+\frac{h_{1}}{z}+\frac{h_{2}}{z^{2}}+\frac{h_{3}}{z^{3}}+\cdots,
$$

and

$$
p(w)=1+\frac{p_{1}}{w}+\frac{p_{2}}{w^{2}}+\frac{p_{3}}{w^{2}}+\cdots,
$$

respectively. Now, upon equating the coefficients of

$$
\begin{align*}
& \lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \tag{2.8}\\
= & 1-\frac{\lambda b_{0}}{z}+\frac{\lambda b_{0}^{2}+2(1-2 \lambda) b_{1}}{z^{2}}-\frac{\lambda b_{0}{ }^{3}-3 \lambda b_{0} b_{1}-3(2-3 \lambda) b_{2}}{z^{3}}+\cdots
\end{align*}
$$

with those of $h(z)$ and coefficients of

$$
\begin{align*}
& \lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \tag{2.9}\\
= & 1+\frac{\lambda b_{0}}{w}+\frac{\lambda b_{0}^{2}-2(1-2 \lambda) b_{1}}{w^{2}}+\frac{\lambda b_{0}{ }^{3}-6(1-2 \lambda) b_{0} b_{1}-3(2-3 \lambda) b_{2}}{w^{3}}+\cdots
\end{align*}
$$

with those of $p(w)$, we get

$$
\begin{align*}
-\lambda b_{0} & =h_{1}, \tag{2.10}\\
\lambda b_{0}^{2}+2(1-2 \lambda) b_{1} & =h_{2}, \tag{2.11}\\
-\lambda b_{0}^{3}+3 \lambda b_{0} b_{1}+3(2-3 \lambda) b_{2} & =h_{3}, \tag{2.12}\\
\lambda b_{0} & =p_{1}, \tag{2.13}\\
\lambda b_{0}^{2}-2(1-2 \lambda) b_{1} & =p_{2}, \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda b_{0}{ }^{3}-6(1-2 \lambda) b_{0} b_{1}-3(2-3 \lambda) b_{2}=p_{3} . \tag{2.15}
\end{equation*}
$$

From (2.10) and (2.13), we get

$$
h_{1}=-p_{1}
$$

and

$$
\begin{equation*}
2 \lambda^{2} b_{0}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{2.16}
\end{equation*}
$$

Adding (2.11) and (2.14), we get

$$
\begin{equation*}
2 \lambda b_{0}^{2}=h_{2}+p_{2} \tag{2.17}
\end{equation*}
$$

Therefore, we find from the equations (2.16) and (2.17) that

$$
\left|b_{0}\right|^{2} \leq \frac{\left|h_{1}\right|^{2}+\left|p_{1}\right|^{2}}{2 \lambda^{2}}
$$

and

$$
\left|b_{0}\right|^{2} \leq \frac{\left|h_{2}\right|+\left|p_{2}\right|}{2 \lambda}
$$

respectively. So we get the desired estimate on the coefficient $\left|b_{0}\right|$ as asserted in (2.3).

Next, in order to find the bound on the coefficient $\left|b_{1}\right|$, we subtract (2.14) from (2.11). We thus get

$$
\begin{equation*}
4(1-2 \lambda) b_{1}=h_{2}-p_{2} \tag{2.18}
\end{equation*}
$$

By squaring and adding (2.11) and (2.14), using (2.16) in the computation leads to

$$
\begin{equation*}
b_{1}^{2}=\frac{1}{(2 \lambda-1)^{2}}\left(\frac{h_{2}^{2}+p_{2}^{2}}{8}-\frac{\left(h_{1}^{2}+p_{1}^{2}\right)^{2}}{16 \lambda^{2}}\right) . \tag{2.19}
\end{equation*}
$$

Therefore, we find from the equations (2.18) and (2.19) that

$$
\left|b_{1}\right| \leq \frac{\left|h_{2}\right|+\left|p_{2}\right|}{4(2 \lambda-1)}
$$

and

$$
\left|b_{1}\right| \leq \frac{1}{(2 \lambda-1)} \sqrt{\frac{\left|h_{2}\right|^{2}+\left|p_{2}\right|^{2}}{8}+\frac{\left(\left|h_{1}\right|^{2}+\left|p_{1}\right|^{2}\right)^{2}}{16 \lambda^{2}}} .
$$

Finally, to determine the bound on $\left|b_{2}\right|$, consider the sum of (2.12) and (2.15) with $h_{1}=-p_{1}$, we have

$$
\begin{equation*}
b_{0} b_{1}=\frac{h_{3}+p_{3}}{3(5 \lambda-2)} . \tag{2.20}
\end{equation*}
$$

Subtracting (2.15) from (2.12) with $h_{1}=-p_{1}$, we obtain

$$
\begin{equation*}
6(2-3 \lambda) b_{2}=h_{3}-p_{3}+2 \lambda b_{0}^{3}-3(2-3 \lambda) b_{0} b_{1} \tag{2.21}
\end{equation*}
$$

Using (2.16) and (2.20) in (2.21) give to

$$
b_{2}=\frac{1}{3(2-3 \lambda)}\left[\frac{p_{1}^{3}}{\lambda^{2}}+\frac{4 \lambda-2}{5 \lambda-2} h_{3}-\frac{\lambda}{5 \lambda-2} p_{3}\right] .
$$

This evidently completes the proof of Theorem 2.3.

3. Corollaries and consequences

By setting

$$
h(z)=p(z)=\left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\alpha}=1+\frac{2 \alpha}{z}+\frac{2 \alpha^{2}}{z^{2}}+\frac{2 \alpha^{3}}{z^{3}}+\cdots(0<\alpha \leq 1, z \in \Delta)
$$

in Theorem 2.3, we conclude the following result.
Corollary 3.1. Let the function $f(z)$ given by (1.1) be in the class $M_{\Sigma_{\mathfrak{B}}}(\alpha, \lambda)$ $(0<\alpha \leq 1, \lambda \geq 1)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq\left\{\begin{array}{l}
\alpha \sqrt{\frac{2}{\lambda}} ; 1 \leq \lambda \leq 2 \\
\frac{2 \alpha}{\lambda} ; \lambda \geq 2
\end{array}\right. \\
\left|b_{1}\right| \leq \frac{\alpha^{2}}{2 \lambda-1},
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq \frac{2 \alpha^{3}}{3(3 \lambda-2)}\left[1+\frac{4}{\lambda^{2}}\right]
$$

Remark 3.2. Corollary 3.1 is an improvement of estimates obtained in Theorem 1.2. Because

$$
\frac{\alpha^{2}}{2 \lambda-1} \leq \frac{\alpha^{2}}{2 \lambda-1} \sqrt{1+\frac{4}{\lambda^{2}}} \leq \frac{\alpha}{2 \lambda-1} \sqrt{(\alpha-2)^{2}+\frac{4 \alpha^{2}}{\lambda^{2}}}
$$

and

$$
\frac{2 \alpha^{3}}{3(3 \lambda-2)}\left[1+\frac{4}{\lambda^{2}}\right] \leq \frac{2 \alpha}{3(3 \lambda-2)}\left[2\left\{\frac{6 \alpha^{2}-\lambda^{2}\left(\alpha^{2}-3 \alpha+2\right)}{3 \lambda^{2}}\right\}+3-2 \alpha\right] .
$$

By setting

$$
\begin{aligned}
h(z) & =p(z)=\frac{1+\frac{1-2 \beta}{z}}{1-\frac{1}{z}} \\
& =1+\frac{2(1-\beta)}{z}+\frac{2(1-\beta)}{z^{2}}+\frac{2(1-\beta)}{z^{3}}+\cdots(0 \leq \beta<1, z \in \Delta),
\end{aligned}
$$

in Theorem 2.3, we conclude the following result.
Corollary 3.3. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$ $(0 \leq \beta<1, \lambda \geq 1)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq\left\{\begin{array}{l}
\sqrt{\frac{2(1-\beta)}{\lambda}} ; \lambda+2 \beta \leq 2 \\
\frac{2(1-\beta)}{\lambda} ; \lambda+2 \beta \geq 2
\end{array}\right. \\
\left|b_{1}\right| \leq \frac{1-\beta}{2 \lambda-1},
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq \frac{2(1-\beta)}{3(3 \lambda-2)}\left[1+\frac{4(1-\beta)^{2}}{\lambda^{2}}\right]
$$

Remark 3.4. Corollary 3.3 is an improvement of estimates obtained in Theorem 1.4.

By setting $\lambda=1$ in Corollary 3.3, we obtain the following result.
Corollary 3.5. Let the function $f(z)$ given by (1.1) be meromorphic bi-starlike of order $\beta(0 \leq \beta<1)$ in Δ. Then

$$
\left|b_{0}\right| \leq\left\{\begin{array}{l}
\sqrt{2(1-\beta)} ; \beta \leq \frac{1}{2} \\
2(1-\beta) ; \beta \geq \frac{1}{2}
\end{array}\right.
$$

and

$$
\left|b_{1}\right| \leq(1-\beta) .
$$

Remark 3.6. The estimate for $\left|b_{0}\right|$ given in Corollary 3.5 is an improvement of estimates obtained by Hamidi et al. [3, Theorem 2].

Acknowledgments. The authors wish to thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[2] S. G. Hamidi, S. A. Halim, and J. M. Jahangiri, Coefficient estimates for a class of meromorphic biunivalent functions, C. R. Math. Acad. Sci. Paris 351 (2013), no. 9-10, 349-352.
[3] , Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. 2013 (2013), Art. ID 498159, 4 pp.
[4] S. G. Hamidi, T. Janani, G. Murugusundaramoorthy, and J. M. Jahangiri, Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 277-282.
[5] T. Janani and G. Murugusundaramoorthy, Coefficient estimates of meromorphic bistarlike functions of complex order, Inter. J. Anal. Appl. 4 (2014), no. 1, 68-77.
[6] Y. Kubota, Coefficients of meromorphic univalent functions, Kōdai Math. Sem. Rep. 28 (1976/77), no. 2-3, 253-261.
[7] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean Math. Soc. 50 (2013), no. 5, 1531-1538.
[8] M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
[9] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 111-116.
[10] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421-450.

Safa Salehian
Department of Mathematics
Shahrood University of Technology
P.O.Box 316-36155, Shahrood, Iran

E-mail address: salehian_gilan86@yahoo.com
Ahmad Zireh
Department of Mathematics
Shahrood University of Technology
P.O.Box 316-36155, Shahrood, Iran

E-mail address: azireh@gmail.com

