DOI QR코드

DOI QR Code

Stability analysis of an existing utility tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel

복층터널의 분기터널 굴착에 따른 지하 공동구의 안정성 분석

  • Nam, Kyoung-Min (Department of Civil Engineering, Hanyang University) ;
  • Choi, Min-ki (Department of Civil Engineering, Hanyang University) ;
  • Kim, Jung-Joo (Department of Civil Engineering, Hanyang University) ;
  • Jafri, Turab H. (Department of Civil Engineering, Hanyang University) ;
  • Yoo, Han-Kyu (Department of Civil Engineering, Hanyang University)
  • 남경민 (한양대학교 건설환경공학과) ;
  • 최민기 (한양대학교 건설환경공학과) ;
  • 김정주 (한양대학교 건설환경공학과) ;
  • ;
  • 유한규 (한양대학교 건설환경공학과)
  • Received : 2017.03.10
  • Accepted : 2017.03.23
  • Published : 2017.03.31

Abstract

Government plans to construct a double-deck tunnel under a portion of Gyeongbu Expressway that will solve traffic problems and could also be used as a flood storage facility. Divergence tunnels connect the main tunnel to the urban areas and their construction effects on adjacent structures at shallow depth need to be analyzed. This study primarily includes the numerical analysis of construction effects of divergence tunnels on utility tunnels. The utility tunnel was analyzed for three cases of volume loss applied to the divergence tunnel and two cases of the angle between main tunnel and divergence tunnel ($36^{\circ}$ and $45^{\circ}$). The results show that the more the volume loss was applied and the shorter the distance was between utility tunnel and divergence tunnel, the more the utility tunnel was affected in terms of induced displacements, angular displacement and stability. The worst scenario was found out to be the one where the angle between main tunnel and divergence tunnel was $36^{\circ}$ and the distance between divergence tunnel and utility tunnel was 10 m, resulting in the largest displacement and differential settlement at the bottom of the utility tunnel. A relationship between the angular displacement and the distance to diameter ratio was also established.

서울시는 도심지 교통체증을 해결하기 위해 최근 경부고속도로의 일부 구간을 복층터널로 계획하는 방안을 검토하고 있다. 도심지에 복층터널을 건설할 경우, 교통난 해소뿐만 아니라 말레이시아 스마트 터널과 같이 홍수 시 침수방지를 위한 저류시설로도 활용할 수 있을 것으로 본다. 그러나 도로터널을 복층터널로 계획할 경우에는 각 지역을 연결하는 분기터널이 필요하며, 분기터널은 토피가 낮은 구간에 편평율이 큰 대단면 또는 복잡한 터널 단면형상으로 이루어지게 된다. 이때 토피가 낮은 지역에서는 지하 공동구나 건물 기초 등에 인접하여 위치하게 되며 터널 건설로 인해 지장물에 미치는 영향에 대해 반드시 검토해야 한다. 본 연구에서는 복층터널에서 분기되는 터널 굴착 시, 지하 공동구에 미치는 영향을 수치해석을 통해 분석하였다. 변위조절모델(Displacement Controlled Model)을 이용하여 터널 주변의 지반손실률을 1.0%, 3.0%, 그리고 5.0%까지 모사하였다. 복층터널에서 분기되는 각도를 $45^{\circ}$$36^{\circ}$로 다르게 설정하여 공동구 측면 및 하부로의 접근을 고려할 수 있도록 하였다. 그 결과, 일반적으로 분기터널이 공동구에 근접할수록 그리고 지반손실률이 클수록 변위, 각변위 그리고 안정성에 미치는 영향이 큰 것으로 타나났다. 공동구 바닥부의 침하와 공동구 부재의 안정성에는 이격거리 보다는 공동구의 하부에 근접하여 큰 변위와 부등침하를 유발할 수 있는 각도 $36^{\circ}$, 이격거리 10 m가 가장 취약한 것으로 나타났다. 본 연구를 통해 근접시공 시 구조물의 안정성 평가를 위한 각변위-거리/직경 관계를 제시하였으며, 지하 공동구 안정성에 영향을 미치는 한계 임계 지반손실률을 산정하였다.

Keywords

References

  1. Bjerrum, L. (1963), "Allowable settlement of structures", In Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 2, pp. 135-137.
  2. Carranza-Torres, C., Diederichs, M. (2009), "Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets", Tunnelling and Underground Space Technology, Vol. 24, No. 5, pp. 506-532. https://doi.org/10.1016/j.tust.2009.02.001
  3. Cheng, C.Y., Dasari, G.R. (2007), "Finite element analysis of tunnel-soil-pile interaction using displacement controlled model", Tunnelling and Underground Space Technology, Vol. 22, pp. 450-466. https://doi.org/10.1016/j.tust.2006.08.002
  4. Do, N.A., Dias, D., Oreste, P., Djeran-Maigre, I. (2014), "Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground" Tunnelling and Underground Space Technology, Vol. 42, pp. 40-51. https://doi.org/10.1016/j.tust.2014.02.001
  5. FHWA (2009), "Technical Manual for Design and Construction of Road Tunnels - Civil Element", US Department of Transportation Federal Highway Administration
  6. Hefny, A.M., Chua, H.C., Zhao, J. (2004), "Parametric studies on the interaction between existing and new bored tunnels" Tunneling and Underground Space Technology, Underground Space for Sustainable Urban Development, Proceedings of the 30th ITA-AITES World Tunnel Congress Singapore, Vol. 19, No. 4, pp. 22-27.
  7. Hong, Y., Soomro, M.A., Ng, C.W.W. (2015), "Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling", Computers and Geotechnics, Vol. 64, pp. 105-119. https://doi.org/10.1016/j.compgeo.2014.10.007
  8. Kim, H.M. (1997), "Effect of interference and Ground Movement by Twin Tunnelling", Tunnel and Underground Space, Vol. 7, No. 2, pp. 136-142.
  9. Kim, Y.J., Im, C.G., Kang, S.G., Lee, Y.J. (2014), "A study on surface settlement characteristics according to the cohesive soil depth through laboratory model tests", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 6, pp. 507-520. https://doi.org/10.9711/KTAJ.2014.16.6.507
  10. Li, X.G., Yuan, D.J. (2012), "Response of a double-decked metro tunnel to shield driving of twin closely under-crossing tunnels" Tunnelling and Underground Space Technology, Vol. 28, pp. 18-30. https://doi.org/10.1016/j.tust.2011.08.005
  11. Ministry of Land, Infrastructure, and Transport (2016), "Design criteria for common utility tunnel", South Korea.
  12. Neville, A.M. (1996), Properties of Concrete, Fourth and Final Edition Standards.
  13. Peck, R.B. (1969), Deep excavations and tunnelling in soft ground. In Proc. 7th int. conf. on SMFE, pp. 225-290.
  14. Seong, J.H., Kim, Y.S., Shin, B.G. (2013), "Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method", Journal of the Korean Geosynthetic Society, Vol. 12, No. 3, pp. 43-53. https://doi.org/10.12814/jkgss.2013.12.3.043
  15. Son, M.R., Yun, J.C. (2009), "Numerical analysis of tunnelling-induced ground movements", Journal of Korean Tunnelling and Underground Space Association, Vol. 11, No. 3, pp. 229-242.
  16. Yoo, C.S., Song, A.R. (2006), "Effects of tunnel construction on an existing tunnel lining" Journal of Korean Tunnelling and Underground Space Association, Vol. 8, No. 4, pp. 307-324.
  17. Zhang, Z.X., Huang, M. (2016), "Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil" Computers and Geotechnics, Vol. 56, pp. 121-132.