DOI QR코드

DOI QR Code

Development of numerical model for estimating thermal environment of underground power conduit considering characteristics of backfill materials

되메움재 특성을 고려한 전력구 열환경 변화 예측 수치해석모델 개발

  • Kim, Gyeonghun (Risk Management Research Center, Dongbu Insurance) ;
  • Park, Sangwoo (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Min-Ju (Korea Electric Power Research Institute) ;
  • Lee, Dae-Soo (Department chief, Korea Electric Power Research Institute) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2017.01.18
  • Accepted : 2017.03.10
  • Published : 2017.03.31

Abstract

The thermal analysis of an underground power conduit for electrical cables is essential to determine their current capacity with an increasing number of demands for high-voltage underground cables. The temperature rises around a buried cable, caused by excessive heat dissipation, may increase considerably the thermal resistance of the cables, leading to the danger of "thermal runaway" or damaging to insulators. It is a key design factor to develop the mechanism on thermal behavior of backfilling materials for underground power conduits. With a full-scale field test, a numerical model was developed to estimate the temperature change as well as the thermal resistance existing between an underground power conduit and backfill materials. In comparison with the field test, the numerical model for analyzing thermal behavior depending on density, moisture content and soil constituents is verified by the one-year-long field measurement.

최근 전력구 지중 송전선의 허용 전류용량에 대한 정부규제로 인해 전력구 공사에 현장 되메움재의 열적 거동에 대한 연구가 중요해졌다. 점차 증대되는 고용량 전력공급에 대한 수요와 더불어, 허용 전류용량을 산정하기 위해, 전력 케이블 주변 온도 증가를 유발하는 요인을 예측하고 분석하는 것이 시급하다. 전력구 내부의 과도한 열확산으로 인한 지중 송전선로 주변의 온도 증가는 지중 송전선 자체의 열저항을 증가시켜 절연 파괴 및 열 폭주 현상을 야기한다. 따라서 전력구 설계 및 시공시, 되메움재에 따른 전력구 현장 열거동 메커니즘을 규명하는 것이 매우 중요하다. 본 논문에서는 현장 시험시공을 기반으로, 전력구내부와 주변지반의 온도 변화 및 열저항을 산정하기 위한 수치해석 모델을 개발하였다. 전력구 열거동 파악을 위한 수치해석은 현장시험 시공시 획득한 4개의 다른 종류의 되메움재의 열적 그리고 물리적 물성치를 기반으로 수행되었다. 또한, 실내 시험을 통해 산정한 각 되메움재의 열저항을 수치해석 모델에 입력변수로 적용했다. 전력구 내부에 일정한 열량이 공급될 때, 되메움재의 단위중량, 함수비, 열적 특성 등 여러 변수를 고려한 열거동 메카니즘을 모사할 수 있도록 열거동 수치해석 모델을 구성하고 1년 동안의 수행된 현장계측값과 비교를 통하여 개발된 수치해석 모델을 검증하였다.

Keywords

References

  1. Adams, J., Baljet, A.F. (1980), "The thermal behavior of cable backfill materials", IEEE Transactions on power apparatus and systems, Vol. PAS-87, No. 4, Ontario Hydro, Toronto, Canada
  2. Anderson, B. (2006), Convections for U-value calculation, BRE Scotland, pp. 19-20.
  3. ASHRAE Handbook-Fundamentals, 2009.
  4. Boggs, S.A., Chu, F.Y., Radhakrishna, H.S., Steinmanis, J. (1980), "Measurement of soil thermal properties - techniques and instrumentation", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-99, No.2, Ontario Hydro, Toronto, Canada.
  5. Choi, J-M, Cho, S-W (2011), "The Characteristic of Convective Heat Transfer Coefficient by Natural Heat Transfer Coefficient and Forced Heat Transfer Coefficient" Journal of the Architectural Institute of Korea (Korean), Vol. 27, No. 6, pp. 205-212.
  6. Churchill, S.W., Chu, H.H.S. (1975), "Correlating equation for laminar and turbulent free convection a vertical plate", International Journal of Heat and Mass Transfer, Vol. 18, p. 1323. https://doi.org/10.1016/0017-9310(75)90243-4
  7. Jeong, S.H., Kim, D.K., Choi, S.B., Nam, K.Y., Ryoo, H.S., Kang, J.W., Jang, T.I. (2003), "A study on the conductor temperature estimation of underground power cables considering the load current change", Journal of the Korean Institute of Electrical Engineers (Korean), 2003.7, pp. 247-249.
  8. Kim, D.H., Lee, D.S. (2002), "Thermal resistivity of backfill materials for underground power cables", Journal of the Korean Geotechnical Society (Korean), Vol. 18, No. 5, pp. 209-220.
  9. Kim, Y.S., Koo, H.W. (2011), "Resistivity characteristic of the backfill materials for underground power cables", KSCE 2011 Convention.
  10. Kimura, K. (1997), Scientific basis of air conditioning, London Applied Science Publishers Ltd.
  11. Oh, K.D., Kim, D.H., Kim, K.R. (2008), "Fundamental properties and thermal resistance of recycled aggregates for backfilling", Report Korea Electric Power Corporation, KEPRI.
  12. Tanaka, T., Adachi, T., Takeda, H., Tsuchiya, T., (1997), The latest architectural environmental engineering. pp. 164-165.
  13. Wi, J., Hong, S-Y, Lee, D-S, Park, S., Choi, H. (2011), "Evaluation of compaction and thermal characteristics of recycled aggregates for backfilling power transmission pipeline", Journal of the Korean Geotechnical Society (Korean), Vol. 27, No. 7, pp. 17-33. https://doi.org/10.7843/kgs.2011.27.7.017
  14. Yazdanian, M., Klems, J.H. (1994), "Measurement of the exterior convective film coefficient for windows in low-rise building", ASHRAE Trasactions, Vol. 100, No. 1, pp. 1-15.
  15. Kim, D.Y., Lee, H.S. (2011), "A study on the design of tunnel lining insulation based on measurement of temperature in tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 13, No. 4 pp. 319-345.
  16. Roh, J.H. (2012), "A study on the prediction of HLW Temperature from Natural Ventilation Quantity using CFD", Tunnel and Underground Space, Vol. 22, No. 6, pp. 429-437. https://doi.org/10.7474/TUS.2012.22.6.429
  17. Yoo, J.O. (2013), "A numerical study on the characteristics of the smoke movement and the effects of structure in road tunnel fire", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 289-300. https://doi.org/10.9711/KTAJ.2013.15.3.289
  18. Churchill, S.W. Bernstein, M. (1997), "A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow", Journal of Heat Transfer, Vol. 99, No. 2, pp. 300-307. https://doi.org/10.1115/1.3450685
  19. Clauser, C., Hugenges, E. (1995), "Thermal conductivity of rocks and minerals", Rock physics & phase relations: A handbook of physical constants, pp. 105-126.
  20. COMSOL Multiphysics (2012), "COMSOL multiphysics user guide (Version 4.3 a)", COMSOL, AB.
  21. Patankar, S.V. (1980), "Numerical heat transfer and fluid flow", CRC press.