DOI QR코드

DOI QR Code

MTD 기법이 적용된 SDR 통신 시스템의 성능 분석

Performance Analysis of SDR Communication System Based on MTD Technology

  • 기장근 (공주대학교 전기전자제어공학부) ;
  • 이규대 (공주대학교 정보통신공학부)
  • 투고 : 2017.02.09
  • 심사 : 2017.04.07
  • 발행 : 2017.04.30

초록

최근 이동 단말의 급격한 증가와 함께 통신망 구축의 용이성, 단말의 자유로운 이동성 및 세션의 연속성, 유선에 비견되는 데이터 전송 대역폭 등을 제공하는 무선통신 기술에 대한 수요가 급증하고 있다. 그러나 이러한 무선 통신은 신호전달 특성상 도청이나 DOS 공격, 세션 하이재킹, 재밍 등과 같은 악의적 무선 사이버 공격에 취약하다는 단점을 갖는다. 이와 같은 무선 사이버 공격을 막는 다양한 방법 중 최근 많은 연구가 이루어지고 있는 MTD(Moving Target Defense) 기술은 시스템이 공격 받을 수 있는 요소들을 지속적으로 변경시킴으로써 방어 시스템의 보안 능력을 향상시키는 기법이다. 본 논문에서는 자가 방어 및 복원력이 있는 무선 통신 시스템 구축을 위해 변복조 방법, 동작 주파수, 전송 패킷 길이 등을 동적으로 변화시키는 MTD 기법이 적용된 SDR(Software Defined Radio) 무선통신 테스트베드를 개발하고, 악의적 사용자의 공격 성공률에 대한 성능분석 수식을 제안하고, 시뮬레이션을 통해 성능분석 결과의 타당성을 검증하였다.

With the rapid increase in the number of mobile terminals, demand for wireless technologies has sharply increased these days. While wireless communication provides advantages such as ease of deployment, mobility of terminals, continuity of session, and almost comparable transmission bandwidth to the wired communication, it has vulnerability to malicious radio attacks such as eavesdropping, denial of service, session hijacking, and jamming. Among a variety of methods of preventing wireless attacks, the MTD(Moving Target Defense) is the technique for improving the security capability of the defense system by constantly changing the ability of the system to be attacked. In this paper, in order to develop a resilient software defined radio communication testbed system, we present a novel MTD approach to change dynamically and randomly the radio parameters such as modulation scheme, operating frequency, packet size. The probability of successful attack on the developed MTD-based SDR communication system has been analysed in a mathematical way and verified through simulation.

키워드

참고문헌

  1. Se-Hwan Park, Jong-Kyu Park, "IoT Industry & Security Technology Trends," International Journal of Advanced Smart Convergence (IJASC), Vol. 5, No. 3, pp. 27-31, Sept., 2016. DOI: https://doi.org/10.7236/ijasc.2016.5.3.27
  2. Myongyeal Lee, Jaepyo Park, "Analysis and Study on Invasion Threat and Security Measures for Smart Home Services in IoT Environment," Journal of The Institute of Internet, Broadcasting and Communication (JIIBC), Vol.16, No.5, pp.27-32, Oct., 2016. https://doi.org/10.7236/JIIBC.2016.16.5.27
  3. Hee-Sook Kim, "A Study on Security System of 4G Network System," Journal of The Institute of Internet, Broadcasting and Communication (JIIBC), Vol.16, No.6, pp.15-23, Dec., 2016. https://doi.org/10.7236/JIIBC.2016.16.6.15
  4. Valentina Casola, Alessandra De Benedictis, and Massimiliano Albanese, "A Moving Target Defense Approach for Protecting Resource- Constrained Distributed Devices," IEEE 14th International Conference on Information Reuse and Integration(IRI), Aug., 2013. DOI: https://doi.org/10.1109/iri.2013.6642449
  5. Panos Kampanakis, Harry Perros, and Tsegereda Beyene, "SDN-based solutions for Moving Target Defense network protection," IEEE 15th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), June 2014. DOI: https://doi.org/10.1109/wowmom.2014.6918979
  6. S. Jajodia, A. K. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang, and X. S. Wang, editors. Moving Target Defense II: Application of Game Theory and Adversarial Modeling, Springer, ISBN 978-1-4614-5416-8, 2013.
  7. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, Software Defined Radio: Architectures, Systems and Functions, John Wiley & Sons, ISBN 0-470-85164-3, 2003.
  8. Chi-Yuan Chen, Fan-Hsun Tseng, Kai-Di Chang, Han-Chieh Chao, and Jiann-Liang Chen, "Reconfigurable Software Defined Radio and Its Applications," Tamkang Journal of Science and Engineering, Vol. 13, No. 1, pp.29-38, 2010.
  9. Rehan Muzammil, M. Salim Beg, Mohsin M. Jamali, "A Dynamically Reconfigurable Transceiver for Software Defined Radio," International Journal of Computer Applications (0975 - 8887), Vol.76, No.17, Aug., 2013. DOI: https://doi.org/10.5120/13344-0716
  10. Moshe Timothy Masonta, Mjumo Mzyece, and Ntsibane Ntlatlapa, "Spectrum Decision in Cognitive Radio Networks: A Survey," IEEE Communications Surveys & Tutorials, Vol. 15, No. 3, pp.1088-1107, 3rd quarter 2013. DOI: https://doi.org/10.1109/surv.2012.111412.00160
  11. GNURAdio, http://gnuradio.org/, 2017.
  12. Feng Ge, C. Jason Chiang, Yitzchak M. Gottlieb, and Ritu Chadha, "GNU Radio-Based Digital Communications: Computational Analysis of a GMSK Transceiver," Global Telecommunications Conference (GLOBECOM), Dec., 2011. DOI: https://doi.org/10.1109/glocom.2011.6133692
  13. François Panneton, Pierre L'ecuyer, and Makoto Matsumoto, "Improved Long-Period Generators Based on Linear Recurrences Modulo 2," ACM Transactions on Mathematical Software, Vol. 32, No. 1, pp.1-16, March 2006. DOI: https://doi.org/10.1145/1132973.1132974
  14. Donald E. Knuth, The Art of Computer Programming Vol.2, 3rd Ed., pp.145-146, Addison-Wesley, 1997.