DOI QR코드

DOI QR Code

The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants

회수된 Bi2Te3의 계면활성제에 따른 합성 및 성장 거동

  • So, Hyeongsub (Department of Energy Engineering, Dankook University) ;
  • Song, Eunpil (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
  • 소형섭 (단국대학교 에너지공학과) ;
  • 송은필 (한양대학교 융합화학공학과) ;
  • 좌용호 (한양대학교 융합화학공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2017.03.06
  • Accepted : 2017.03.28
  • Published : 2017.04.28

Abstract

$Bi_2Te_3$ powders are recovered by wet chemical reduction for waste n-type thermoelectric chips, and the recovered particles with different morphologies are prepared using various surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylbenzenesulfonate (SDBS), and ethylenediaminetetraacetic acid (EDTA). When citric acid is added as the surfactant, the shape of the aggregated particles shows no distinctive features. On the other hand, rod-shaped particles are formed in the sample with CTAB, and sheet-like particles are synthesized with the addition of SDBS. Further, particles with a tripod shape are observed when EDTA is added as the surfactant. The growth mechanism of the particle shapes depending on the surfactant is investigated, with a focus on the nucleation and growth phenomena. These results help to elucidate the intrinsic formation mechanism of the rod, plate, and tripod structures of the $Bi_2Te_3$ recovered by the wet reduction process.

Keywords

References

  1. P. Rimal, S. M. Yoon, E. B. Kim, C. H. Lee and S. J. Hong: J. Korean Powder Metall. Inst., 23 (2016) 126. https://doi.org/10.4150/KPMI.2016.23.2.126
  2. L. E. Bell: Science, 321 (2008) 1457. https://doi.org/10.1126/science.1158899
  3. Y. Zhang, G. Xu, P. Ren, Z. Wang and C. Ge: J. Electron. Mater., 40 (2011) 835. https://doi.org/10.1007/s11664-011-1588-y
  4. Y. Deng, X. S. Zhou, G. D. Wei, J. Liu, C. W. Nan and S. J. Zhao: J. Phys. Chem. Solids, 63 (2002) 2119. https://doi.org/10.1016/S0022-3697(02)00261-5
  5. H. T. Zhang, X. G. Luo, C. H. Wang, Y. M. Xiong, S. Y. Li and X. H. Chen: J. Cryst. Growth, 265 (2004) 558. https://doi.org/10.1016/j.jcrysgro.2004.02.097
  6. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. Laforge: Science, 297 (2002) 2229. https://doi.org/10.1126/science.1072886
  7. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin and T. Koga: Phys. Solid State, 41 (1999) 679. https://doi.org/10.1134/1.1130849
  8. T. Sun, X. B. Zhao, T. J. Zhu and J. P. Tu: Mater. Lett., 60 (2006) 2534. https://doi.org/10.1016/j.matlet.2006.01.033
  9. A. Purkayastha, Q. Yan, M. S. Raghuveer, D. D. Gandhi, H. Li, Z. W. Liu, R. V. Ramanujan, T. Borca-Tasciuc and G. Ramanath: Adv. Mater., 20 (2008) 2679. https://doi.org/10.1002/adma.200702572
  10. C. Kim, D. H. Kim, Y. S. Han, J. S. Chung, S. H. Park, S. Park and H. Kim : Mater. Res. Bull., 46 (2011) 407. https://doi.org/10.1016/j.materresbull.2010.12.004
  11. K. T. Kim, T. S. Min and D. W. Kim: J. Korean Powder Metall. Inst., 23 (2016) 263. https://doi.org/10.4150/KPMI.2016.23.4.263
  12. D. Dhak and P. Pramanik: J. Am. Ceram. Soc., 89 (2006) 534. https://doi.org/10.1111/j.1551-2916.2005.00784.x
  13. F. Wu, H. Z. Song, F. Gao, W. Y. Shi, J. F. Jia and X. Hu: J. Electron. Mater., 42 (2013) 1140. https://doi.org/10.1007/s11664-013-2541-z
  14. C. Bouet, B. Mahler, B. Nadal, B. Abecassis, M. D. Tessier, S. Ithurria, X. Xu and B. Dubertret: Chem. Mater., 25 (2013) 639. https://doi.org/10.1021/cm304080q
  15. L. Vayssieres: Adv. Mater., 15 (2003) 464. https://doi.org/10.1002/adma.200390108
  16. H. B. Mao, J. Y. Feng, X. Ma, C. Wu and X. J. Zhao: J. Nanopart. Res., 14 (2012) 887. https://doi.org/10.1007/s11051-012-0887-4
  17. A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc and G. Ramanath: Adv. Mater., 18 (2006) 496. https://doi.org/10.1002/adma.200501339
  18. Y. Zhang, L. P. Hu, T. J. Zhu, J. Xie and X. B. Zhao: Cryst. Growth Des., 13 (2013) 645. https://doi.org/10.1021/cg3013156
  19. Q. Wei, Y. Su, C. J. Yang, Z. G. Liu, H. N. Xu, Y. D. Xia and J. Yin: J. Mater. Sci., 46 (2011) 2267. https://doi.org/10.1007/s10853-010-5066-3
  20. G. Zhang, B. Kirk, L. A. Jauregui, H. Yang, X. Xu, Y. P. Chen and Y. Wu : Nano Lett., 12 (2012) 56. https://doi.org/10.1021/nl202935k
  21. F. Xiao, B. Yoo, K. H. Lee and N. V. Myung: J. Am. Chem. Soc., 129 (2007) 10068. https://doi.org/10.1021/ja073032w
  22. K. J. Lee, Y. H. Jin and M. S. Kong: J. Nanosci. Nanotechnol., 14 (2014) 7919. https://doi.org/10.1166/jnn.2014.9422
  23. B. Swain and K. J. Lee: J. Chem. Technol. Biotechnol., 92 (2017) 614. https://doi.org/10.1002/jctb.5042
  24. X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li: Mater. Chem. Phys., 78 (2002) 99.
  25. Z. Liu, Z. Hu, J. Liang, S. Li, Y. Yang, S. Peng and Y. Qian: Langmuir, 20 (2004) 214. https://doi.org/10.1021/la035160d
  26. F. GuoLi, C. Guang, W. Xiong and L. J. Qiang: Sci. China. Tech. Sci., 54 (2011) 19.
  27. L. Zhang, D. Chen and X. Jiao: J. Phys. Chem. B, 110 (2006) 2668. https://doi.org/10.1021/jp056367d
  28. P. G. Partridge: Metall. Rev., 12 (1967) 169.
  29. W. Lu, Y. Ding, Y. Chen, Z. L. Wang and J. Fang: J. Am. Chem. Soc., 127 (2005) 10112. https://doi.org/10.1021/ja052286j
  30. D. Deng, J. Wang and J. S. Yu: CrystEngComm, 17 (2015) 4349. https://doi.org/10.1039/C5CE00207A
  31. T. Hargreaves: Chem. Brit., 39 (2003) 38.
  32. S. Bandyopadhyay, J. C. Shelley, M. Tarek, P. B. Moore and M. L. Klein: J. Phys. Chem. B, 102 (1998) 6318. https://doi.org/10.1021/jp982051c
  33. S. Perkin, N. Kampf and J. Klein: Phys. Chem. B, 109 (2005) 3832. https://doi.org/10.1021/jp047746u
  34. T. J. Crowley, E. S. Meadows, E. Kostoulas and F. J. Doyle Jr.: J. Process. Contr., 10 (2000) 419. https://doi.org/10.1016/S0959-1524(00)00017-2