DOI QR코드

DOI QR Code

High resolution structural analysis of biomolecules using cryo-electron microscopy

초저온 전자현미경법을 통한 고분해능 생물분자 구조분석

  • 현재경 (한국기초과학지원연구원 전자현미경연구부)
  • Published : 2017.12.31

Abstract

Transmission electron microscopy (TEM) is a versatile and powerful technique that enables direct visualization of biological samples of sizes ranging from whole cell to near-atomic resolution details of a protein molecule. Thanks to numerous technical breakthroughs and monumental discoveries, 3D electron microscopy (3DEM) has become an indispensable tool in the field of structural biology. In particular, development of cryo-electron microscopy(cryo-EM) and computational image processing played pivotal role for the determination of 3D structures of complex biological systems at sub-molecular resolution. Here, basis of TEM and 3DEM will be introduced, especially focusing on technical advancements and practical applications. Also, future prospective of constantly evolving 3DEM field will be discussed, with an anticipation of great biological discoveries that were once considered impossible.

Keywords

References

  1. D.B. Williams and C.B. Carter, Transmission electron microscopy: , 2ed. (Springer US, 2009).
  2. J. Hyun and H.S. Jung, Biodesign 1, 13 (2013).
  3. E. Nogales, Nature methods 13 (1), 24 (2016). https://doi.org/10.1038/nmeth.3694
  4. R. F. Egerton, P. Li, and M. Malac, Micron 35 (6), 399 (2004). https://doi.org/10.1016/j.micron.2004.02.003
  5. M. Ohi, Y. Li, Y. Cheng, and T. Walz, Biological procedures online 6, 23(2004). https://doi.org/10.1251/bpo70
  6. J. Dubochet, M. Adrian, J. J. Chang, J. C. Homo, J. Lepault, A. W.McDowall, and P. Schultz, Quarterly reviews of biophysics 21 (2),129 (1988). https://doi.org/10.1017/S0033583500004297
  7. J. Frank, A. Verschoor, and M. Boublik, Science 214 (4527), 1353(1981). https://doi.org/10.1126/science.7313694
  8. J. A. Mindell and N. Grigorieff, Journal of structural biology 142 (3),334 (2003). https://doi.org/10.1016/S1047-8477(03)00069-8
  9. D. J. De Rosier and A. Klug, Nature 217 (5124), 130 (1968) https://doi.org/10.1038/217130a0
  10. R. Henderson and P. N. Unwin, Biophysics of structure and mechanism3 (2), 121 (1977). https://doi.org/10.1007/BF00535804
  11. X. Li, P. Mooney, S. Zheng, C. R. Booth, M. B. Braunfeld, S. Gubbens, D.A. Agard, and Y. Cheng, Nature methods 10 (6), 584 (2013) https://doi.org/10.1038/nmeth.2472
  12. B .E. Bammes, R. H. Rochat, J. Jakana, D. H. Chen, and W. Chiu, Journal of structural biology 177 (3), 589 (2012). https://doi.org/10.1016/j.jsb.2012.01.008
  13. X. C. Bai, I. S. Fernandez, G. McMullan, and S. H. Scheres, eLife 2, e00461 (2013).
  14. S. H. Scheres, Methods in enzymology 579, 125 (2016).
  15. R. Danev, D. Tegunov, and W. Baumeister, eLife 6 (2017).
  16. Y. L. Liang, M. Khoshouei, M. Radjainia, Y. Zhang, A. Glukhova, J. Tarrasch, D. M. Thal, S. G. B. Furness, G. Christopoulos, T. Coudrat, R. Danev, W. Baumeister, L. J. Miller, A. Christopoulos, B. K. Kobilka, D. Wootten, G. Skiniotis, and P. M. Sexton, Nature 546 (7656), 118(2017). https://doi.org/10.1038/nature22327
  17. S. S. Hasan, A. Miller, G. Sapparapu, E. Fernandez, T. Klose, F. Long, A.Fokine, J. C. Porta, W. Jiang, M. S. Diamond, J. E. Crowe, Jr., R. J. Kuhn,and M. G. Rossmann, Nature communications 8, 14722 (2017). https://doi.org/10.1038/ncomms14722
  18. A. W. P. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov, H. J. Garringer, R. A. Crowther, B. Ghetti, M. Goedert, and S. H. W. Scheres,Nature 547 (7662), 185 (2017). https://doi.org/10.1038/nature23002
  19. J. A. Briggs, Current opinion in structural biology 23 (2), 261 (2013). https://doi.org/10.1016/j.sbi.2013.02.003
  20. J. Frank and A. Ourmazd, Methods 100, 61 (2016). https://doi.org/10.1016/j.ymeth.2016.02.007
  21. H. Jeong, J. S. Kim, S. Song, H. Shigematsu, T. Yokoyama, J. Hyun, and N. C. Ha, Structure 24 (2), 272 (2016). https://doi.org/10.1016/j.str.2015.12.007
  22. H. Jeong, S.-G. Lee, H.-S. Kweon, and J. Hyun, Biodesign 5 (3), 96(2017).