DOI QR코드

DOI QR Code

Comparative Analysis of Predicted Gene Expression among Crenarchaeal Genomes

  • Received : 2016.08.16
  • Accepted : 2017.01.26
  • Published : 2017.03.31

Abstract

Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS) as a numerical estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently capture the highly expressed genes.

Keywords

References

  1. Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol 2004;22:346-353. https://doi.org/10.1016/j.tibtech.2004.04.006
  2. Kurland CG. Major codon preference: theme and variations. Biochem Soc Trans 1993;21:841-846. https://doi.org/10.1042/bst0210841
  3. Sharp PM, Lloyd AT. Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. Nucleic Acids Res 1993;21:179-183. https://doi.org/10.1093/nar/21.2.179
  4. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 1994;136:927-935.
  5. Baker SF, Nogales A, Martinez-Sobrido L. Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines. Future Virol 2015;10:715-730. https://doi.org/10.2217/fvl.15.31
  6. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics 1995;139:1067-1076.
  7. Hartl DL, Moriyama EN, Sawyer SA. Selection intensity for codon bias. Genetics 1994;138:227-234.
  8. Wu G, Culley DE, Zhang W. Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology 2005;151(Pt 7):2175-2187. https://doi.org/10.1099/mic.0.27833-0
  9. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 1981;151:389-409. https://doi.org/10.1016/0022-2836(81)90003-6
  10. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 1985;2:13-34.
  11. Karlin S, Mrazek J. Predicted highly expressed genes of diverse prokaryotic genomes. J Bacteriol 2000;182:5238-5250. https://doi.org/10.1128/JB.182.18.5238-5250.2000
  12. Karlin S, Mrazek J, Ma J, Brocchieri L. Predicted highly expressed genes in archaeal genomes. Proc Natl Acad Sci U S A 2005;102:7303-7308. https://doi.org/10.1073/pnas.0502313102
  13. Carbone A, Kepes F, Zinovyev A. Codon bias signatures, organization of microorganisms in codon space, and lifestyle. Mol Biol Evol 2005;22:547-561. https://doi.org/10.1093/molbev/msi040
  14. Kurland CG. Codon bias and gene expression. FEBS Lett 1991;285:165-169. https://doi.org/10.1016/0014-5793(91)80797-7
  15. Supek F, Vlahovicek K. Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics 2005;6:182. https://doi.org/10.1186/1471-2105-6-182
  16. Supek F, Vlahovicek K. Correction: comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics 2010;11:463. https://doi.org/10.1186/1471-2105-11-463
  17. Sharp PM, Li WH. The Codon Adaptation Index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987;15:1281-1295. https://doi.org/10.1093/nar/15.3.1281
  18. Fox JM, Erill I. Relative codon adaptation: a generic codon bias index for prediction of gene expression. DNA Res 2010;17:185-196. https://doi.org/10.1093/dnares/dsq012
  19. Roymondal U, Das S, Sahoo S. Predicting gene expression level from relative codon usage bias: an application to Escherichia coli genome. DNA Res 2009;16:13-30. https://doi.org/10.1093/dnares/dsn029
  20. Das S, Roymondal U, Sahoo S. Analyzing gene expression from relative codon usage bias in Yeast genome: a statistical significance and biological relevance. Gene 2009;443:121-131. https://doi.org/10.1016/j.gene.2009.04.022
  21. Das S, Roymondal U, Chottopadhyay B, Sahoo S. Gene expression profile of the cynobacterium synechocystis genome. Gene 2012;497:344-352. https://doi.org/10.1016/j.gene.2012.01.023
  22. Lee S, Weon S, Lee S, Kang C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol Bioinform Online 2010;6:47-55.
  23. Hockenberry AJ, Sirer MI, Amaral LA, Jewett MC. Quantifying position-dependent codon usage bias. Mol Biol Evol 2014;31:1880-1893. https://doi.org/10.1093/molbev/msu126
  24. Sahoo S, Das S. Analyzing gene expression and codon usage bias in diverse genomes using a variety of models. Curr Bioinform 2014;9:102-112. https://doi.org/10.2174/1574893608999140109114247
  25. Sahoo S, Das S. Analyzing gene expression and codon usage bias in Metallosphaera sedula. J Bioinform Intell Control 2014;3:72-80. https://doi.org/10.1166/jbic.2014.1069
  26. Amils R. Crenarchaeota. In: Encyclopedia of Astrobiology (Amils R, Gargaud M, Cernicharo Quintanilla J, Cleaves HJ, Irvine WM, Pinti D, et al., eds.). Berlin: Springer-Verlag, 2011. p. 390.
  27. Donati ER, Castro C, Urbieta MS. Thermophilic microorganisms in biomining. World J Microbiol Biotechnol 2016;32:179. https://doi.org/10.1007/s11274-016-2140-2
  28. Lillford PJ, Holt CB. In vitro uses of biological cryoprotectants. Philos Trans R Soc Lond B Biol Sci 2002;357:945-951. https://doi.org/10.1098/rstb.2002.1083
  29. Rubinsky B, Arav A, Fletcher GL. Hypothermic protection: a fundamental property of "antifreeze" proteins. Biochem Biophys Res Commun 1991;180:566-571. https://doi.org/10.1016/S0006-291X(05)81102-7
  30. Barns SM, Delwiche CF, Palmer JD, Pace NR. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 1996;93:9188-9193. https://doi.org/10.1073/pnas.93.17.9188
  31. Shields DC. Switches in species-specific codon preferences: the influence of mutation biases. J Mol Evol 1990;31:71-80. https://doi.org/10.1007/BF02109476
  32. Das S, Chakrabarti J, Ghosh Z, Sahoo S, Mallick B. A new measure to study phylogenetic relations in the brown algal order Ectocarpales: the "codon impact parameter". J Biosci 2005;30:699-709. https://doi.org/10.1007/BF02703570
  33. Galtier N, Lobry JR. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 1997;44:632-636. https://doi.org/10.1007/PL00006186
  34. Lynn DJ, Singer GA, Hickey DA. Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 2002;30:4272-4277. https://doi.org/10.1093/nar/gkf546
  35. Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci U S A 1962;48:582-592. https://doi.org/10.1073/pnas.48.4.582
  36. Graham DE, Overbeek R, Olsen GJ, Woese CR. An archaeal genomic signature. Proc Natl Acad Sci U S A 2000;97:3304-3308. https://doi.org/10.1073/pnas.97.7.3304
  37. Goodacre NF, Gerloff DL, Uetz P. Protein domains of unknown function are essential in bacteria. MBio 2013;5:e00744-e00713.
  38. Snijders AP, Walther J, Peter S, Kinnman I, de Vos MG, van de Werken HJ, et al. Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 2006;6:1518-1529. https://doi.org/10.1002/pmic.200402070

Cited by

  1. A CAZyme-Rich Genome of a Taxonomically Novel Rhodophyte-Associated Carrageenolytic Marine Bacterium pp.1436-2236, 2018, https://doi.org/10.1007/s10126-018-9840-6