References
- Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL. Metallothionein-human GH fusion genes stimulate growth of mice. Science 1983;222:809-14. https://doi.org/10.1126/science.6356363
- Park TS, Han JY. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA 2012;109:9337-41. https://doi.org/10.1073/pnas.1203823109
- Macdonald J, Taylor L, Sherman A, et al. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA 2012;109:E1466-72. https://doi.org/10.1073/pnas.1118715109
- Park TS, Han JY. Genetic modification of chicken germ cells. Ann NY Acad Sci USA 2012:1271:104-9. https://doi.org/10.1111/j.1749-6632.2012.06744.x
- Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 1989;56:313-21. https://doi.org/10.1016/0092-8674(89)90905-7
- Koller BH, Hagemann LJ, Doetschman T, et al. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 1989;86:8927-31. https://doi.org/10.1073/pnas.86.22.8927
- Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 1989;342:435-8. https://doi.org/10.1038/342435a0
- Schwartzberg PL, Goff SP, Robertson EJ. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 1989;246:799-803. https://doi.org/10.1126/science.2554496
- Park TS, Lee HJ, Kim KH, Kim JS, Han JY. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci USA 2014;111:12716-21. https://doi.org/10.1073/pnas.1410555111
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23. https://doi.org/10.1126/science.1231143
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-6. https://doi.org/10.1126/science.1232033
- Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013;154:1380-9. https://doi.org/10.1016/j.cell.2013.08.021
- Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013;153:910-8. https://doi.org/10.1016/j.cell.2013.04.025
- Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 2013;110:13904-9. https://doi.org/10.1073/pnas.1308335110
- Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014;156:836-43. https://doi.org/10.1016/j.cell.2014.01.027
- Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 2014;24:372-5. https://doi.org/10.1038/cr.2014.11
- Stern CD. The chick; a great model system becomes even greater. Dev Cell 2005;8:9-17.
- Schusser B, Collarini EJ, Yi H, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci USA 2013;110:20170-5. https://doi.org/10.1073/pnas.1317106110
- Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013;31:822-6. https://doi.org/10.1038/nbt.2623
- Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015;4:e264. https://doi.org/10.1038/mtna.2015.37
- Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2014;24:132-41. https://doi.org/10.1101/gr.162339.113
- McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997;387:83-90. https://doi.org/10.1038/387083a0
- Kambadur R, Sharma M, Smith TPL, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 1997;7:910-5. https://doi.org/10.1101/gr.7.9.910
- Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004;350:2682-8. https://doi.org/10.1056/NEJMoa040933
Cited by
- CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00240
- Forkhead box O3 promotes cell proliferation and inhibits myotube differentiation in chicken myoblast cells vol.60, pp.1, 2019, https://doi.org/10.1080/00071668.2018.1547362
- CRISPR/Cas9 gene editing in a chicken model: current approaches and applications vol.61, pp.2, 2017, https://doi.org/10.1007/s13353-020-00537-9
- Functional analyses of miRNA-146b-5p during myogenic proliferation and differentiation in chicken myoblasts vol.21, pp.1, 2017, https://doi.org/10.1186/s12860-020-00284-z
- Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species vol.12, pp.None, 2017, https://doi.org/10.3389/fgene.2021.627714
- CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness vol.69, pp.23, 2017, https://doi.org/10.1021/acs.jafc.1c01062