References
- Vansickle J. Survey shows lower incidence of PSE. National Hog Farmer 2006;51:42.
- Ludvigsen J. Muscular degeneration in pigs. 15th International Veterinary Congress; 1953 Aug 9-15; Stockholm, Sweden.
- Briskey EJ. Etiological status and associated studies of pale, soft, exudative porcine musculature. Adv Food Res 1964;13:89-178.
- Leheska JM, Wulf DM, Maddock RJ. Effects of fasting and transportation on pork quality development and extent of postmortem metabolism. J Anim Sci 2002;80:3194-202. https://doi.org/10.2527/2002.80123194x
- Rosenvold K, Andersen HJ. Factors of significance for pork quality-a review. Meat Sci 2003;64:219-37. https://doi.org/10.1016/S0309-1740(02)00186-9
- Sellier P, Monin G. Genetics of pig meat quality: a review. J Muscle Foods 1994;5:187-219. https://doi.org/10.1111/j.1745-4573.1994.tb00530.x
- Shen QW, Du M. Role of AMP-activated protein kinase in the glycolysis of postmortem muscle. J Sci Food Agric 2005;85:2401-6. https://doi.org/10.1002/jsfa.2252
- Shen QW, Gerrard DE, Du M. Compound C, an inhibitor of AMPactivated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Sci 2008;78:323-30. https://doi.org/10.1016/j.meatsci.2007.06.023
- Liang J, Yang Q, Zhu MJ, Jin Y, Du M. AMP-activated protein kinase (AMPK) alpha2 subunit mediates glycolysis in postmortem skeletal muscle. Meat Sci 2013;95:536-41. https://doi.org/10.1016/j.meatsci.2013.05.025
- Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J 2000;19:1176-9. https://doi.org/10.1093/emboj/19.6.1176
- Phillips DM. The presence of acetyl groups of histones. Biochem J 1963;87:258-63. https://doi.org/10.1042/bj0870258
- Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010;327:1000-4. https://doi.org/10.1126/science.1179689
- Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010;327:1004-7. https://doi.org/10.1126/science.1179687
- Nin V, Escande C, Chini CC, et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J Biol Chem 2012;287: 23489-501. https://doi.org/10.1074/jbc.M112.365874
- Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009;458:1056-60. https://doi.org/10.1038/nature07813
- McGee SL, van Denderen BJ, Howlett KF, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008;57:860-7. https://doi.org/10.2337/db07-0843
- Shen QW, Means WJ, Underwood KR, et al. Early post-mortem AMPactivated protein kinase (AMPK) activation leads to phosphofructokinase-2 and-1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. J Agric Food Chem 2006;54:5583-9. https://doi.org/10.1021/jf060411k
- Monin G, Sellier P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci 1985;13:49-63. https://doi.org/10.1016/S0309-1740(85)80004-8
- Scheffler TL, Gerrard DE. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci 2007;77:7-16. https://doi.org/10.1016/j.meatsci.2007.04.024
- Du M, Shen QW, Zhu MJ. Role of beta-adrenoceptor signaling and AMP-activated protein kinase in glycolysis of postmortem skeletal muscle. J Agric Food Chem 2005;53:3235-9. https://doi.org/10.1021/jf047913n
- Fraser H, Lopaschuk GD, Clanachan AS. Alteration of glycogen and glucose metabolism in ischaemic and post-ischaemic working rat hearts by adenosine A1 receptor stimulation. Br J Pharmacol 1999;128: 197-205. https://doi.org/10.1038/sj.bjp.0702765
- Marsin AS, Bertrand L, Rider MH, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000;10:1247-55. https://doi.org/10.1016/S0960-9822(00)00742-9
- Shen QW, Means WJ, Thompson SA, et al. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Sci 2006;74:388-95. https://doi.org/10.1016/j.meatsci.2006.04.007
- Shen QW, Underwood KR, Means WJ, McCormick RJ, Du M. The halothane gene, energy metabolism, adenosine monophosphateactivated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle. J Anim Sci 2007;85:1054-61. https://doi.org/10.2527/jas.2006-114
- Schwagele F, Buesa PL, Honikel KO. Enzymological investigations on the causes for the PSE-syndrome, II. Comparative studies on glycogen phosphorylase from pig muscles. Meat Sci 1996;44:41-53. https://doi.org/10.1016/S0309-1740(96)00045-9
- Li Z, Li X, Wang Z, Shen QW, Zhang D. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle. Food Chem 2016;202:94-8. https://doi.org/10.1016/j.foodchem.2016.01.085
- Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417-35. https://doi.org/10.1146/annurev.biochem.73.011303.073651
- Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008;31:449-61. https://doi.org/10.1016/j.molcel.2008.07.002
- Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2011;36:108-16. https://doi.org/10.1016/j.tibs.2010.09.003
Cited by
- Stress Effects on Meat Quality: A Mechanistic Perspective vol.18, pp.2, 2018, https://doi.org/10.1111/1541-4337.12417
- Acetylation and Phosphorylation of Proteins Affect Energy Metabolism and Pork Quality vol.68, pp.27, 2020, https://doi.org/10.1021/acs.jafc.0c01822
- Effects of protein posttranslational modifications on meat quality: A review vol.20, pp.1, 2017, https://doi.org/10.1111/1541-4337.12668