DOI QR코드

DOI QR Code

Meso scale model for fiber-reinforced-concrete: Microplane based approach

  • Smolcic, Zeljko (Faculty of Civil Engineering of University of Rijeka) ;
  • Ozbolt, Josko (Faculty of Civil Engineering of University of Rijeka)
  • Received : 2015.02.09
  • Accepted : 2017.01.06
  • Published : 2017.04.25

Abstract

In the present paper experimental and numerical analysis of hook-ended steel fiber reinforced concrete is carried out. The experimental tests are performed on notched beams loaded in 3-point bending using fiber volume fractions up to 1.5%. The numerical analysis of fiber reinforced concrete beams is performed at meso scale. The concrete is discretized with 3D solid finite elements and microplane model is used as a constitutive law. The fibers are modelled by randomly generated 1D truss finite elements, which are connected with concrete matrix by discrete bond-slip relationship. It is demonstrated that the presented approach, which is based on the modelling of concrete matrix using microplane model, able to realistically replicate experimental results. In all investigated cases failure is due to the pull-out of fibers. It is shown that with increase of volume content of fibers the effective bond strength and slip capacity of fibers decreases.

Keywords

References

  1. ACI Committee 544 (2001), State-of-the Art Report on Fiber Reinforced Concrete.
  2. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", RILEM, 93(16), 155-177.
  3. Bazant, Z.P. and Prat, P.C. (1988), "Microplane model for brittleplasic material-parts I and II", J. Eng. Mech., 114, 1672-1702. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
  4. Bolander, J.E. and Saito, S. (1997), "Discrete modelling of shortfiber reinforcement in cementitious composites", Adv. Cement Bas. Mater., 6(3-4), 76-86. https://doi.org/10.1016/S1065-7355(97)90014-6
  5. Bolander, J.E. and Sukumar, N. (2005), "Irregular lattice model for quasistatic crack propagation", Phys. Rev. B, 71(9), 1-12.
  6. Bolander, J.E., Choi, S. and Duddukuri, S.R. (2008), "Fracture of fiber-reinforced cement composites: Effects of fiber distribution", J. Fract., 154(1), 73-86. https://doi.org/10.1007/s10704-008-9269-4
  7. Caner, F.C., Bazant, Z.P. and Wendner, R. (2013), "Microplane model M7f for fiber reinforced concrete", Eng. Fract. Mech., 105, 41-57. https://doi.org/10.1016/j.engfracmech.2013.03.029
  8. EN 12390-3 (2001), Testing Hardened Concrete-Part 3, Compressive Strength of Test Specimens, Bruxelles, Belgium.
  9. EN 12390-6 (2000), Testing Hardened Concrete-Part 6, Tensile Splitting Strength of Test Specimens, Bruxelles, Belgium.
  10. Fischer, G., Stang, H. and Dick-Nielsen, L. (2007), "Initiation and development of cracking in ECC materials: Experimental observations and modelling", Fract. Mech. Concrete Struct., 3, 1517-1522.
  11. Han, T.S., Feenstra, P.H. and Billington, S.L. (2003), "Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading", ACI Struct. J., 100(6), 749-757.
  12. Jun, P. and Mechtcherine, V. (2010), "Behaviour of strainhardening cement-based composites (SHCC) under monotonic and cyclic tensile loading: Part 2-modelling", Cement Concrete Compos., 32(10), 810-818. https://doi.org/10.1016/j.cemconcomp.2010.08.004
  13. Kang, J., Kim, K., Lim, Y.M. and Bolander, J.E. (2014), "Modeling of fiber-reinforced cement composites: Discrete representation of fiber pullout", J. Sol. Struct., 51(10), 1970-1979. https://doi.org/10.1016/j.ijsolstr.2014.02.006
  14. Kunieda, M., Ogura, H., Ueda, N. and Nakamura, H. (2011), "Tensile fracture process of strain hardening cementitious composites by means of three-dimensional meso-scale analysis", Cement Concrete Compos., 33(9), 956-965. https://doi.org/10.1016/j.cemconcomp.2011.05.010
  15. Maalej, M. (2001), "Tensile properties of short fiber composites with fiber strength distribution", J. Mater. Sci., 36(9), 2203-2212. https://doi.org/10.1023/A:1017500218309
  16. Mohr, O. (1900), "Welche umstande bedingen die elastizitatsgrenze und den bruch eines materiales?", Zeitschrift des Vereins Deutscher Ingenieure, 46(1524-1530), 1572-1577.
  17. Ogura, H., Kunieda, M. and Nakamura, H. (2013), "Meso-scale analysis considering effect of fiber inclination in fiber reinforced cementitious composites", RILEM Bookseries, 8, 261-272.
  18. Ozbolt, J. (1998), "MASA-macroscopic space analysis, internal report", Institut fur Werkstoffe im Bauwesen, Universitat Stuttgart, Germany.
  19. Ozbolt, J. and Reinhardt, H.W. (2002), "Numerical study of mixed mode fracture in concrete", J. Fract., 118(2), 145-161. https://doi.org/10.1023/A:1022886127806
  20. Ozbolt, J., Lettow, S. and Kozar, I. (2002), "Discrete bond element for 3D finite element analysis of reinforced concrete structures", Proceedings of the 3rd International Symposium on Bond in Concrete-from Research to Standards, Budapest, Hungary.
  21. Ozbolt, J., Li, Y.J. and Kozar, I. (2001), "Microplane model for concrete with relaxed kinematic constraint", J. Sol. Struct., 38(16), 2683-2711. https://doi.org/10.1016/S0020-7683(00)00177-3
  22. Ozbolt, J., Mestrovic, D., Li, Y.J. and Eligehausen, R. (2000), "Compression failure-beams made of different concrete types and sizes", J. Struct. Eng., 126(2), 200-209. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(200)
  23. Schauffert, E.A. and Cusatis, G. (2012), "Lattice discrete particle model for fiber-reinforced concrete I: Theory", J. Eng. Mech., 138(7), 826-833. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000387
  24. Schauffert, E.A., Cusatis, G., Pelessone, D., O'Daniel, J.L. and Baylot, J.T. (2012), "Lattice discrete particle model for fiberreinforced concrete II: Tensile fracture and multiaxial loading behaviour", J. Eng. Mech., 138(7), 834-841. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000392
  25. Suwada, H. and Fukuyama, H. (2006), "Nonlinear finite element analysis on shear failure of structural elements using high performance fiber reinforced cement composite", J. Adv. Concrete Technol., 4(1), 45-57. https://doi.org/10.3151/jact.4.45
  26. Taylor, G.I. (1938), "Plastic strains in metals", J. Inst. Met., 62, 307-324.
  27. Vandewalle, L. (2002), "RILEM TC162-TDF test and design methods for steel fiber reinforced concrete: Bending test final recommendation", Mater. Struct., 35, 579-582.

Cited by

  1. Mechanical Behaviour of Cement-Bound Gravels by Experiment-Based 3D Multi-Scale Modelling: Application to Non-Hazardous Waste Incineration Bottom Ashes Aggregates for Use in Road Engineering vol.54, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jera.54.71
  2. Probabilistic Finite Element Modeling of Textile Reinforced SHCC Subjected to Uniaxial Tension vol.14, pp.13, 2021, https://doi.org/10.3390/ma14133631