DOI QR코드

DOI QR Code

Applied element method simulation of experimental failure modes in RC shear walls

  • Cismasiu, Corneliu (CERIS, ICIST and Department of Civil Engineering, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa) ;
  • Ramos, Antonio Pinho (CERIS, ICIST and Department of Civil Engineering, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa) ;
  • Moldovan, Ionut D. (CERIS, Instituto Superior Tecnico, Universidade de Lisboa) ;
  • Ferreira, Diogo F. (CERIS, ICIST and Department of Civil Engineering, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa) ;
  • Filho, Jorge B. (Department of Structures, Universidade Estadual de Londrina)
  • 투고 : 2016.07.29
  • 심사 : 2017.01.05
  • 발행 : 2017.04.25

초록

With the continuous evolution of the numerical methods and the availability of advanced constitutive models, it became a common practice to use complex physical and geometrical nonlinear numerical analyses to estimate the structural behavior of reinforced concrete elements. Such simulations may yield the complete time history of the structural behavior, from the first moment the load is applied until the total collapse of the structure. However, the evolution of the cracking pattern in geometrical discontinuous zones of reinforced concrete elements and the associated failure modes are relatively complex phenomena and their numerical simulation is considerably challenging. The objective of the present paper is to assess the applicability of the Applied Element Method in simulating the development of distinct failure modes in reinforced concrete walls subjected to monotonic loading obtained in experimental tests. A pushover test was simulated numerically on three distinct RC shear walls, all presenting an opening that guarantee a geometrical discontinuity zone and, consequently, a relatively complex cracking pattern. The presence of different reinforcement solutions in each wall enables the assessment of the reliability of the computational model for distinct failure modes. Comparison with available experimental tests allows concluding on the advantages and the limitations of the Applied Element Method when used to estimate the behavior of reinforced concrete elements subjected to monotonic loading.

키워드

참고문헌

  1. ACI Report 446.3R-97 (1997), Finite Element Analysis of Fracture in Concrete Structures: State-of-the-Art.
  2. ASI (2010), Extreme Loading for Structures V3.1 Modeling Manual, Applied Science International, Durham, U.K.
  3. ASI (2013), Extreme Loading for Structures Theoretical Manual, Applied Science International, Durham, U.K.
  4. Azevedo, N.M., Lemos, J.V. and Almeida, J.R. (2010), "A discrete particle model for reinforced concrete fracture analysis", Struct. Eng. Mech., 36(3), 343-361. https://doi.org/10.12989/sem.2010.36.3.343
  5. Balomenos, G.P., Genikomsou, A.S., Polak, M.A. and Pandey, M.D. (2015), "Efficient method for probabilistic finite element analysis with application to reinforced concrete slabs", Eng. Struct., 103(15), 85-101. https://doi.org/10.1016/j.engstruct.2015.08.038
  6. Borosnyoi, A. and Balazs, G.L. (2005), "Models for flexural cracking in concrete: The state of the art", Struct. Concrete, 6(2), 53-62. https://doi.org/10.1680/stco.2005.6.2.53
  7. Bounassar Filho, J. (1995), "Dimensionamento e comportamento do betão estrutural em zonas com descontinuidades", Ph.D. Dissertation, Instituto Superior Tecnico, Lisboa, Portugal.
  8. Croce, P. and Formichi, P. (2014), "Numerical simulation of the behaviour of cracked reinforced concrete members", Mater. Sci. Appl., 5, 883-894.
  9. Dominguez, N., Fernandez, M.A. and Ibrahimbegovic, A. (2010), "Enhanced solid element for modelling of reinforced-concrete structures with bond slip", Comput. Concrete, 7(4), 347-364. https://doi.org/10.12989/cac.2010.7.4.347
  10. Dujc, J., Brank, B., Ibrahimbegovic, A. and Brancherie, D. (2010), "An embedded crack model for failure analysis of concrete solids", Comput. Concrete, 7(4), 331-346. https://doi.org/10.12989/cac.2010.7.4.331
  11. EN 10002-1 (2001), Tensile Testing of Metallic Materials Method of Test at Ambient Temperature.
  12. EN 12390-3 (2009), Testing Hardened Concrete Compressive Strength of Test Specimens.
  13. Maekawa, K., Okamura, H. and Pimanmas, A. (2003), "Non-linear mechanics of reinforced concrete", CRC Press.
  14. Mamede, N.F., Pinho Ramos, A. and Faria Duarte, M.V. (2013), "Experimental and parametric 3D nonlinear finite element analysis on punching of flat slabs with orthogonal reinforcement", Eng. Struct., 48, 442-457. https://doi.org/10.1016/j.engstruct.2012.09.035
  15. MC2010 (2013), Fib Model Code for Concrete Structures, Ernst & Sohn.
  16. Meguro, K. and Hakuno, M. (1989), "Fracture analyses of concrete structures by the modified distinct element method", Struct. Eng./Earthq. Eng., 6(2), 283-294.
  17. Meguro, K. and Tagel-Din, H. (2000), "Applied element method for structural analysis: Theory and application for linear materials", Struct. Eng. Earthq. Eng., 17(1), 21-35.
  18. Meguro, K. and Tagel-Din, H. (2001), "Applied element simulation of RC structures under cyclic loading", J. Struct. Eng., 127(11), 1295-1305. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1295)
  19. Ngo, D. and Scordelis, A.C. (1967), "Finite element analysis of reinforced concrete beams", ACI J., 64(3), 152-163.
  20. Okamura, H. and Maekawa, K. (1991), Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Gihodo-Shuppan Co., Tokyo, Japan.
  21. Ristic, D., Yamada, Y. and Iemura, H. (1986), "Stress-strain based modeling of hysteretic structures under earthquake induced bending and varying axial loads", Ph.D. Dissertation, Kyoto University, Japan.
  22. Tagel-Din, H. and Meguro, K. (1998), "Consideration of Poisson's ratio effect in structural analysis using elements with three degrees of freedom", Bull. Earthq. Resist. Struct. Rese. Center, Institute of Industrial Science, The University of Tokyo, Japan.
  23. Vecchio, F.J. (1989), "Nonlinear finite element analysis of reinforced concrete membranes", ACI Struct. J., 86(1), 26-35.
  24. Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", J. Struct. Eng., 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  25. Yang, Z.J. and Chen, J. (2005), "Finite element modeling of multiple cohesive discrete crack propagation in reinforced concrete beams", Eng. Fract. Mech., 72(14), 2280-2297. https://doi.org/10.1016/j.engfracmech.2005.02.004

피인용 문헌

  1. AEM을 이용한 철근콘크리트 라이닝의 관입 방호성능 평가 vol.21, pp.3, 2017, https://doi.org/10.9711/ktaj.2019.21.3.377
  2. Applied Element Modelling of Warping Effects in Thin-Walled C-Shaped Steel Sections vol.11, pp.8, 2021, https://doi.org/10.3390/buildings11080328