DOI QR코드

DOI QR Code

Performance of Three-Layered Organic Light-Emitting Diodes Using the Hole-Transport and Injection Layer of TPD and Teflon-AF, and the Electron-Injection Layer of Li2CO3 and LiF

  • Shin, Jong Yeol (Department of Computer.Mechatronics Engeering, Sahmyook University) ;
  • Kim, Tae Wan (Department of Physics, Hongik University) ;
  • Kim, Gwi Yeol (Department of Electrical Engineering, Kwangwoon University) ;
  • Lee, Su Min (Department of Electrical Engineering, Kwangwoon University) ;
  • Hong, Jin Woong (Department of Electrical Engineering, Kwangwoon University)
  • Received : 2016.12.12
  • Accepted : 2017.01.23
  • Published : 2017.04.25

Abstract

The performance of three-layered organic light-emitting diodes (OLEDs) was investigated using TPD hole-transport and injection layers, Teflon-AF, and the electron-injection layer of $Li_2CO_3$ and LiF. The OLEDs were manufactured in a structure of TPD/$Alq_3$/LiF, TPD/$Alq_3$/$Li_2CO_3$, and AF/$Alq_3$/LiF using low-molecular organic materials. In three different three-layered OLEDs, it was found that the device with the TPD/$Alq_3$/LiF structure shows higher performance in maximum luminance, and maximum external quantum efficiency compared to those of the device with TPD/$Alq_3$/$Li_2CO_3$ and TPD/$Alq_3$/LiF by 35% and 17%, and 193% and 133%, respectively. It is thought that the combined LiF/Al cathode contributes to a reduced work function and improves an electrical conduction mechanism due to the electron injection rather than the hole transport, which then increases a recombination rate of charge carriers.

Keywords

References

  1. D. C. Shin, "Information Display", 5, 13, 2005.
  2. M. Pope, H. P. Kallmane, and P. Magnate, J. Chem. Phys., 38, 2042 (1963). [DOI: https://doi.org/10.1063/1.1733929]
  3. H. Kallmann and M. Silver, Journal of the Franklin Institute, 273, 521 (1962). [DOI: https://doi.org/10.1016/0016-0032(62)90721-4]
  4. C. W. Tamh and S. A. Van Slyke, Appl. Phys. Lett., 51, 913 (1987). [DOI: https://doi.org/10.1063/1.98799]
  5. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999). [DOI: https://doi.org/10.1063/1.124258]
  6. S. C. Gong, I. J. Back, J. H. Yoo, H. S. Lim, H. J. Chang, and G. K. Chang, J. of the Microelectronics & Packaging Society, 12, 155 (2005).
  7. T. P. Nguyen and P. Destruel, Handbook of Luminescence, Display Materials, and Devices (American scientific publishers, USA, 2003). p. 90.
  8. T. K. Hatwar, J. P. Spindler, M. L. Ricks, R. H. Young, L. Cosimbescu, W. J. Begley, and S. A. Van Slyke, Asia Display/IMID '04 Digest, 816 (2004).
  9. H. Kanno, Y. J. Hamada, and H. Takahashi, IEEE J. of Selected Topics in Quantum Electronics, 10, 30 (2004). [DOI: https://doi.org/10.1109/JSTQE.2004.824076]
  10. Y. Sato, Organic Electroluminescence Materials and Technologies (CMC, 2004). p. 16-20.
  11. R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N. R. Armstrong, J. Appl. Phys., 84, 6729 (1988). [DOI: https://doi.org/10.1063/1.369000]
  12. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997). [DOI: https://doi.org/10.1063/1.118344]
  13. P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. , 69, 2270 (1996). [DOI: https://doi.org/10.1063/1.117530]
  14. Y. A. Ono, Electroluminescent Displays (World Scientific, Singapore, 1995). p. 62. [DOI: https://doi.org/10.1142/2504]

Cited by

  1. Exploring the experimental photoluminescence, Raman and infrared responses and density functional theory results for TFB polymer vol.236, 2018, https://doi.org/10.1016/j.synthmet.2017.12.008