저가형 관성 센서를 이용한 실내 보행자 위치 추정 알고리즘

  • Published : 2017.03.31

Abstract

본고에서는 저가형 관성 센서를 이용하여 실내 항법을 수행하는 여러 방법들에 대해 알아본다. 저가형 관성 센서를 이용한 추측 항법은 휴대성이 뛰어나고 외부의 인프라 없이 구현이 가능하고 가격이 저렴하다는 장점이 있지만, 오차가 빠르게 누적된다는 단점이 있다. 이를 해결하기 위해 사용자의 보행 특성을 이용한 보행자 추측 항법이 제안되었다. 본고에서는 보행자 추측 항법의 두 분류 기법인 걸음-이동방향 결합 기법과 관성 항법-영속도 보정 결합 기법의 원리와 각 기법들의 기술 동향에 대해 다루고자 한다.

Keywords

References

  1. N. Fallah, I. Apostolopoulos, K. Bekris, and E. Folmer, "Indoor human navigation systems: A survey," Interacting with Computers, vol. 25, no. 1, pp. 21-33, 2013.
  2. M. Youssef and A. Agrawala, "The Horus WLAN location determination system," in Proceedings of the 3rd international conference on Mobile systems, applications, and services, 2005, pp. 205-218: ACM.
  3. L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, "LANDMARC: indoor location sensing using active RFID," Wireless networks, vol. 10, no. 6, pp. 701-710, 2004. https://doi.org/10.1023/B:WINE.0000044029.06344.dd
  4. A. Ward, A. Jones, and A. Hopper, "A new location technique for the active office," IEEE Personal communications, vol. 4, no. 5, pp. 42-47, 1997. https://doi.org/10.1109/98.626982
  5. R. Want, A. Hopper, V. Falcao, and J. Gibbons, "The active badge location system," ACM Transactions on Information Systems (TOIS), vol. 10, no. 1, pp. 91-102, 1992. https://doi.org/10.1145/128756.128759
  6. J. Hallberg, M. Nilsson, and K. Synnes, "Positioning with bluetooth," in Telecommunications, 2003. ICT 2003. 10th International Conference on, 2003, vol. 2, pp. 954-958: IEEE.
  7. R. Harle, "A Survey of Indoor Inertial Positioning Systems for Pedestrians," IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp. 1281-1293, 2013. https://doi.org/10.1109/SURV.2012.121912.00075
  8. M. J. Leach, E. P. Sparks, and N. M. Robertson, "Contextual anomaly detection in crowded surveillance scenes," Pattern Recognition Letters, vol. 44, pp. 71-79, 2014. https://doi.org/10.1016/j.patrec.2013.11.018
  9. A. Brajdic and R. Harle, "Walk detection and step counting on unconstrained smartphones," in Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, 2013, pp. 225-234: ACM.
  10. J. W. Kim, H. J. Jang, D.-H. Hwang, and C. Park, "A step, stride and heading determination for the pedestrian navigation system," Positioning, vol. 1, no. 08, p. 0, 2004.
  11. S. Y. Cho and C. G. Park, "MEMS based pedestrian navigation system," Journal of navigation, vol. 59, no. 01, pp. 135-153, 2006. https://doi.org/10.1017/S0373463305003486
  12. A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, "Zee: Zero-effort crowdsourcing for indoor localization," in Proceedings of the 18th annual international conference on Mobile computing and networking, 2012, pp. 293-304: ACM.
  13. P. Barralon, N. Vuillerme, and N. Noury, "Walk detection with a kinematic sensor: Frequency and wavelet comparison," in Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, 2006, pp. 1711-1714: IEEE.
  14. Y. Murata, K. Kaji, K. Hiroi, and N. Kawaguchi, "Pedestrian dead reckoning based on human activity sensing knowledge," in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 797-806: ACM.
  15. H. Weinberg, "Using the ADXL202 in pedometer and personal navigation applications," Analog Devices AN-602 application note, vol. 2, no. 2, pp. 1-6, 2002.
  16. J. Scarlett, "Enhancing the performance of pedometers using a single accelerometer," Application Note, Analog Devices, no. AN-900, 2007.
  17. W. Kang and Y. Han, "SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization," IEEE Sensors journal, vol. 15, no. 5, pp. 2906-2916, 2015. https://doi.org/10.1109/JSEN.2014.2382568
  18. M. Alzantot and M. Youssef, "UPTIME: Ubiquitous pedestrian tracking using mobile phones," in Wireless Communications and Networking Conference (WCNC), 2012 IEEE, 2012, pp. 3204- 3209: IEEE.
  19. J. Qian, L. Pei, J. Ma, R. Ying, and P. Liu, "Vector graph assisted pedestrian dead reckoning using an unconstrained smartphone," Sensors, vol. 15, no. 3, pp. 5032-5057, 2015. https://doi.org/10.3390/s150305032
  20. S. H. Shin and C. G. Park, "Adaptive step length estimation algorithm using optimal parameters and movement status awareness," Medical engineering & physics, vol. 33, no. 9, pp. 1064-1071, 2011. https://doi.org/10.1016/j.medengphy.2011.04.009
  21. V. Renaudin, M. Susi, and G. Lachapelle, "Step length estimation using handheld inertial sensors," Sensors, vol. 12, no. 7, pp. 8507-8525, 2012. https://doi.org/10.3390/s120708507
  22. M. H. Afzal, Use of Earth's magnetic field for pedestrian navigation (no. 05). 2011.
  23. J. Haverinen and A. Kemppainen, "Global indoor self-localization based on the ambient magnetic field," Robotics and Autonomous Systems, vol. 57, no. 10, pp. 1028-1035, 2009. https://doi.org/10.1016/j.robot.2009.07.018
  24. D. Vissiere, "Guidance navigation and control solutions for unmanned heterogeneous vehicles during a collaborative mission," Ecole Nationale Superieure des Mines de Paris, 2008.
  25. D. Roetenberg, H. J. Luinge, C. T. Baten, and P. H. Veltink, "Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation," IEEE Transactions on neural systems and rehabilitation engineering, vol. 13, no. 3, pp. 395-405, 2005. https://doi.org/10.1109/TNSRE.2005.847353
  26. V. Renaudin and C. Combettes, "Magnetic, acceleration fields and gyroscope quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation," Sensors, vol. 14, no. 12, pp. 22864-22890, 2014. https://doi.org/10.3390/s141222864
  27. D. Loh, S. Zihajehzadeh, R. Hoskinson, H. Abdollahi, and E. J. Park, "Pedestrian Dead Reckoning With Smartglasses and Smartwatch," IEEE Sensors Journal, vol. 16, no. 22, pp. 8132-8141, 2016. https://doi.org/10.1109/JSEN.2016.2606539
  28. A. R. Jimenez, F. Seco, J. C. Prieto, and J. Guevara, "Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU," in Positioning Navigation and Communication (WPNC), 2010 7th Workshop on, 2010, pp. 135-143: IEEE.
  29. S. K. Park and Y. S. Suh, "A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems," Sensors, vol. 10, no. 10, pp. 9163-9178, 2010. https://doi.org/10.3390/s101009163
  30. S. Y. Park, H. Ju, and C. G. Park, "Stance Phase Detection of Multiple Actions for Military Drill Using Foot-mounted IMU," sensors, vol. 14, no. 15, p. 16, 2016.
  31. J.-O. Nilsson, I. Skog, and P. Handel, "A note on the limitations of ZUPTs and the implications on sensor error modeling," in 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 13-15th November 2012, 2012.
  32. H. Ju, M. S. Lee, S. Y. Park, J. W. Song, and C. G. Park, "A pedestrian dead-reckoning system that considers the heel-strike and toe-off phases when using a foot-mounted IMU," Measurement Science and Technology, vol. 27, no. 1, p. 015702, 2015. https://doi.org/10.1088/0957-0233/27/1/015702