DOI QR코드

DOI QR Code

Characterization of Hematite Red Pigment for Porcelain Surface Coating

Porcelain의 표면코팅을 위한 Hematite 적색 안료의 특성

  • Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Park, Hyun (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Won, Il-An (Department of Living Art Design, Kangwon National University)
  • 김경남 (강원대학교 신소재공학과) ;
  • 박현 (강원대학교 신소재공학과) ;
  • 원일안 (강원대학교 생활조형디자인학과)
  • Received : 2017.03.07
  • Accepted : 2017.03.14
  • Published : 2017.04.27

Abstract

In this study, an ${\alpha}-Fe_2O_3$ (hematite) coated porcelain plate was sintered in a temperature range from $1100^{\circ}C$ to $1250^{\circ}C$ using ferrous sulfate. The specimens were investigated by X-ray diffractometer (XRD), scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), and UV-visible spectrophotometer. It was confirmed that ${\alpha}-Fe_2O_3$ (hematite) was densely fused to the surface at several tens of ${\mu}m$, the ${\alpha}-Fe_2O_3$ (hematite) was in the form of thin platelet and polyhedra, and no other compounds appeared in the sintering process. In the specimen coated with ${\alpha}-Fe_2O_3$ (hematite), the reflectance spectra show a red absorption band of 560-650 nm. The $L^*$ value decreased from 53.18 to 46.94 with the firing temperature. The values of $a^*$ and $b^*$ were at 19.03 and 15.25 at $1100^{\circ}C$ and gradually decreased with increasing temperature; these values decreased rapidly at $1250^{\circ}C$ to 11.54 and 7.98, respectively. It is considered that the new phases are formed by the phase transition of the porcelain plate (clay), and thus the $a^*$ and $b^*$ values are greatly influenced.

Keywords

References

  1. Richard A. Eppler & Douglas R. Eppler, The American Ceramic Society, Westerville, Ohio, USA, (2000).
  2. B. Karasu and S. Turan, Am. Ceram. Soc. Bull., 80, 41 (2001).
  3. A. Burgyan and Richard A. Eppler, Am. Ceram. Soc. Bull. 62, 1001 (1983).
  4. H. Katsuki and S. Komarneni, J. Am. Ceram. Soc., 86, 183 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03300.x
  5. F. Bondioli, T. Manfredini, C. Silogardi and A. M. Ferrari, J. Am. Ceram. Soc., 88, 1070 (2005). https://doi.org/10.1111/j.1551-2916.2005.00217.x
  6. F. J. Berry, D. Eadon, J. Holloway and L. E. Smart, J. Mater. Sci., 34, 3631 (1999). https://doi.org/10.1023/A:1004691019526
  7. M. P. Morales, T. Gonzalez-Carreno and C. J. Serna, J. Mater. Res., 7, 2538 (1992). https://doi.org/10.1557/JMR.1992.2538
  8. N. P. Ryde and E. matijevic, Appl. Opt., 33, 7275 (1994). https://doi.org/10.1364/AO.33.007275
  9. T. Sugimoto and Y. Wang. J. Colloid Interface Sci., 207, 137 (1998). https://doi.org/10.1006/jcis.1998.5741
  10. J. Wang, W. B. White and J. H. Adair, J. Am. Ceram. Soc., 88, 3449 (2005). https://doi.org/10.1111/j.1551-2916.2005.00643.x
  11. J. Chen and X. H. Shi, Dyes Pigm., 75, 766 (2007). https://doi.org/10.1016/j.dyepig.2006.08.020
  12. I. A. Won and K. N. Kim, Korean J. Mater. Res., 24, 93 (2014). https://doi.org/10.3740/MRSK.2014.24.2.93
  13. W. M. Carty and U. Senapati, J. Am. Ceram. Soc., 81, 3 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02290.x