DOI QR코드

DOI QR Code

수치해석을 이용한 전동차용 IGBT 모듈의 피로 수명 예측

Numerical Fatigue Life Prediction of IGBT Module for Electronic Locomotive

  • 권오영 (서울과학기술대학교 일반대학원) ;
  • 장영문 (서울과학기술대학교 일반대학원) ;
  • 이영호 (우진산전(주)) ;
  • 좌성훈 (서울과학기술대학교 나노IT디자인융합대학원)
  • Kwon, Oh Young (Department of Manufacturing System and Design Engineering, Seoul National University of Science and Technology) ;
  • Jang, Young Moon (Department of Manufacturing System and Design Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-ho (Woojin Industrial System Co., Ltd.) ;
  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • 투고 : 2017.03.04
  • 심사 : 2017.03.27
  • 발행 : 2017.03.31

초록

본 연구에서는 전동차의 전력 변환 장치로 많이 사용되고 있는 고전압 대전류용(3,300 V/1200 A급) insulated gate bipolar transistor(IGBT) 모듈에 대하여 열 사이클 조건하에서의 열-기계적 응력해석 및 피로수명해석을 수행하였다. 특히 최근 고전압 IGBT용으로 개발되고 있는 구리(copper) 와이어, 리본(ribbon) 와이어를 사용하였을 경우의 응력 및 피로수명을 기존의 알루미늄 와이어와 비교하여 분석하였다. 알루미늄 와이어 보다는 구리 와이어에 응력이 3배 이상 많이 발생하였다. 리본 와이어의 경우 원형 와이어 보다 응력이 더 크게 발생하며, 구리 리본 와이어의 응력이 제일 높았다. 칩과 direct bond copper(DBC)를 접합하고 있는 칩 솔더부의 피로해석을 수행한 결과, 솔더의 크랙은 주로 솔더의 모서리에서 발생하였다. 원형 와이어를 사용할 경우 솔더의 크랙은 약 35,000 사이클에서 발생하기 시작하였으며, 알루미늄 와이어 보다는 구리 와이어에서의 크랙의 발생 면적이 더 컸다. 반면 리본 와이어를 사용하였을 경우 크랙의 면적은 원형 와이어를 사용하였을 경우보다 적음을 알 수 있다. DBC와 베이스 플레이트 사이에 존재하는 솔더의 경우 크랙의 성장 속도는 와이어의 재질이나 형태에 관계없이 비슷하였다. 그러나 칩 솔더에 비하여 크랙의 발생이 일찍 시작하며, 40,000 사이클이 되면 전체 솔더의 반 이상이 파괴됨을 알 수 있었다. 따라서 칩 솔더 보다는 DBC와 베이스 플레이트 사이에 존재하는 솔더의 신뢰성이 더 큰 문제가 될 것으로 판단된다.

In this study, the thermomechanical stress and fatigue analysis of a high voltage and high current (3,300 V/1200 A) insulated gate bipolar transistor (IGBT) module used for electric locomotive applications were performed under thermal cycling condition. Especially, the reliability of the copper wire and the ribbon wire were compared with that of the conventional aluminum wire. The copper wire showed three times higher stress than the aluminum wire. The ribbon type wire showed a higher stress than the circular type wire, and the copper ribbon wire showed the highest stress. The fatigue analysis results of the chip solder connecting the chip and the direct bond copper (DBC) indicated that the crack of the solder mainly occurred at the outer edge of the solder. In case of the circular wire, cracking of the solder occurred at 35,000 thermal cycles, and the crack area in the copper wire was larger than that of the aluminum wire. On the other hand, when the ribbon wire was used, the crack area was smaller than that of the circular wire. In case of the solder existing between DBC and base plate, the crack growth rate was similar regardless of the material and shape of the wire. However, cracking occurred earlier than chip solder, and more than half of the solder was failed at 40,000 cycles. Therefore, it is expected that the reliability of the solder between DBC and base plate would be worse than the chip solder.

키워드

참고문헌

  1. K. S. Kim, D. H. Choi, and S. B. Jung, "Overview on thermal management technology for high power device packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014). https://doi.org/10.6117/kmeps.2014.21.2.013
  2. H. Lu, C. Bailey, and C. Yin, "Design for reliability of power electronics modules", Microelectron. Reliab., 49(9-11), 1250 (2009). https://doi.org/10.1016/j.microrel.2009.07.055
  3. L. L. Liao, T. Y. Hung, C. K. Liu, W. Li, M. J. Dai, and K. N. Chiang, "Electro-thermal finite element analysis and verification of power module with aluminum wire", Microelectron Eng., 120, 114 (2014). https://doi.org/10.1016/j.mee.2013.12.033
  4. T. Y. Hung, S. Y. Chiang, C. Y. Chou, C. C. Chiu, and K. N. Chiang, "Thermal design and transient analysis of insulated gate bipolar transistors of power module", Thermal and Thermomechanical Phenomena in Electronic Systems, 12th IEEE Intersociety Conference, 1 (2010).
  5. N. K. Kim, Y. T. Choi, S. C. Kim, J. M. Park, and E. D. Kim, "Thermal and stress analysis of power IGBT module package by finite element method", J. Microelectron. Packag. Soc., 6(4), 23 (1999).
  6. M. Ciappa, "Selected failure mechanisms of modern power modules", Microelectron Reliab., 42(4-5), 653 (2002). https://doi.org/10.1016/S0026-2714(02)00042-2
  7. W. Wu, M. Held, P. Jacob, P. Scacco, and A. Birolini, "Investigation on the long term reliability of power IGBT modules", Proc. 7th International Symposium on Power Semiconductor Devices and Ics (ISPSD), 443 (1995).
  8. Z. Wang, W. Qiao, B. Tian, and L. Qu, "An effective heat propagation path-based online adaptive thermal model for IGBT modules", IEEE Applied Power Electronics Conference and Exposition (APEC), 513 (2014).
  9. N. Ghodke, D. Kumbhakarna, S. Nakanekar, and S. Tonapi, Fatigue life prediction for solder interconnects in IGBT modules by using the successive initiation method, 14th IEEE ITHERM Conference, 598 (2014).
  10. Hua Lu, Chris Bailey, Chunyan Yin, "Design for reliability of power electronics modules", Microelectron. Reliab., 49(9-11), 1250 (2009). https://doi.org/10.1016/j.microrel.2009.07.055
  11. K. Shinohara, and Q. Yu, "Evaluation of fatigue life of semiconductor power device by power cycle test and thermal cycle test using finite element analysis", Sci. Res. Eng., 2(12), 1006 (2010).
  12. S. Bader, W. Gust, and H. Hieber, "Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems", Acta. Metall. Mater, 43(1), 329 (1995). https://doi.org/10.1016/0956-7151(95)90289-9
  13. K. Guth, D. Siepe, J. Grlich, H. Torwesten, R. Roth, F. Hille, and F. Umbach, "New assembly and interconnects beyond sintering methods", Proc. 6th International Conference on Integrated Power Electronics Systems (CIPS), 232 (2010).
  14. H. Wang, P. Yang, and B. Bao, "Life predict and simulation of the copper wire in flexible printed circuit board", Proc. 3rd International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2, 470 (2011).
  15. M. Motalab, Z. Cai, J. C. Suhling, and P. Lall, "Determination of Anand constants for SAC solders using stress-strain or creep data", Proc. 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), 910 (2012).
  16. F. X. Che, H. L. Pang, W. H. Zhu, W. Sun, and A. Y. S. Sun, "Modeling constitutive model effect on reliability of lead-free solder joint", Proc. 7th International Conference on Electronic Packaging Technology (ICEPT), 1, IEEE (2006).
  17. Y. Zhou, L. Xu, and S. Liu, "Optimization for warpage and residual stress due to reflow process in IGBT modules based on pre-warped substrate", Microelectron. Eng., 136, 63 (2015). https://doi.org/10.1016/j.mee.2015.04.019