Abstract
In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.
최근 현대인들은 풍족해진 먹을거리에도 불구하고, 특정 영양소의 과잉 및 부족 섭취로 영양불균형의 문제로 겪고 있다. 이에 따라, 건강 및 식단조절에 관한 관심이 증가하였고, 다양한 모바일시스템을 이용한 어플리케이션들이 등장하였다. 하지만 대부분의 어플리케이션들은 섭취한 식단을 기록하고 단순한 통계를 보여주는데 그치는 수준이며 건강 식단을 위한 일반적인 정보를 제공한다. 건강에 관심 있는 사용자에게는 실질적으로 본인의 음식 선호를 반영하거나 맞춤형 권장 정보를 제공하는 추천서비스가 필요하다. 따라서 본 연구에서는 사용자의 신체 및 활동조건에 따른 권장섭취열량에 대해 식품군별 교환단위수를 부여하고, 과거 섭취이력을 활용하여 음식 선호를 분석하여 식품군별 권장섭취 단위수를 만족하는 식단추천 기법을 제안한다. 또한 실험을 통하여 사용자의 선호만을 고려한 경우, 권장교환단위만을 고려하는 경우와 비교하여 정밀도, 재현율, 건강지수, 그리고 3지표의 조화평균을 도출하고 제안하는 알고리즘의 우수성을 증명하였다. 해당 기법을 활용하여 사용자는 본인의 선호를 반영하는 맞춤형 건강식단을 추천받을 수 있으며 이를 통해 건강한 식습관 개선 및 유지에 도움을 줄 수 있다.