References
- Al-Tabey, W.A. (2010), "Effect of pipeline filling material on electrical capacitance tomography", Proceedings of the International Postgraduate Conference on Engineering (IPCE 2010), Perlis, Malaysia, October.
- Al-Tabey, W.A. (2012), Finite Element Analysis in Mechanical Design Using ANSYS: Finite Element Analysis (FEA) Hand Book For Mechanical Engineers With ANSYS Tutorials, LAP Lambert Academic Publishing, Germany, ISBN 978-3-8454-0479-0.
- Altabey, W.A. (2016), "Detecting and predicting the crude oil type inside composite pipes using ECS and ANN", Struct. Monit. Mainten., 3(4), 377-393. https://doi.org/10.12989/smm.2016.3.4.377
- Altabey, W.A. (2016), "FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion", Struct. Monit. Mainten., 3(3), 297-314. https://doi.org/10.12989/SMM.2016.3.3.297
- Altabey, W.A. (2016), "The thermal effect on electrical capacitance sensor for two-phase flow monitoring", Struct. Monit. Mainten., 3(4), 335-347. https://doi.org/10.12989/smm.2016.3.4.335
- Amaro, A.M., Santos, J.B. and Cirne, J.S. (2011), "Delamination depth in composites laminates with interface elements and ultrasound analysis", Strain, 47(2), 138-145. https://doi.org/10.1111/j.1475-1305.2008.00491.x
- ANSYS Low-Frequency Electromagnetic analysis Guide, The Electrostatic Module in the Electromagnetic subsection of ANSYS, (2015), ANSYS, inc. Southpointe 275 Technology Drive Canonsburg, PA 15317, Published in the USA.
- Asencio, K., Bramer-Escamilla, W., Gutierrez, G. and Sanchez, I. (2015), "Electrical capacitance sensor array to measure density profiles of a vibrated granular bed", J. Pow. Technol., 270, 10-19. https://doi.org/10.1016/j.powtec.2014.10.003
- Cunedioglu, Y. and Beylergil, B. (2015), "Free vibration analysis of damaged composite beams", Struct. Eng. Mech., 55(1), 79-92. https://doi.org/10.12989/sem.2015.55.1.079
- Daoye, Y., Bin, Z., Chuanlong, X., Guanghua, T. and Shimin, W. (2009), "Effect of pipeline thickness on electrical capacitance tomography", Proceedings of the 6th International Symposium on Measurement Techniques for Multiphase Flows, Journal of Physics: Conference Series, 147, 1-13.
- Davijani, A.A.B., Hajikhani, M. and Ahmadi, M. (2011), "Acoustic Emission based on sentry function to monitor the initiation of delamination in composite materials", J. Mater. Des., 32(5), 3059-3065. https://doi.org/10.1016/j.matdes.2011.01.010
- De Albuquerque, V.C., Tavares, J.R.S. and Durao, L.M.P. (2010), "Evaluation of delamination damage on composite plates using an artificial neural network for the radiographic image analysis", J. Compos. Mater., 44(9), 1139-1159. https://doi.org/10.1177/0021998309351244
- Fasching, G.E. and Smith, N.S. (1988), "High Resolution Capacitance Imaging System", US Dept. Energy, 37, DOE/METC-88/4083.
- Fasching, G.E. and Smith, N.S. (1991) "A capacitive system for 3-Dimensional imaging of fluidized-beds", Rev. Sci. Instr., 62(9), 2243-2251. https://doi.org/10.1063/1.1142343
- Garcia, D., Palazzetti, R., Trendafilova, I., Fiorini, C. and Zucchelli, A. (2015), "Vibration-based delamination diagnosis and modelling for composite laminate plates", J. Compos. Struct., 130, 155-162. https://doi.org/10.1016/j.compstruct.2015.04.021
- Heuer, H., Schulze, M.H. and Meyendorf, N. (2013), "Non-destructive evaluation (NDE) of composites: eddy current techniques", Non-destructive evaluation (NDE) of polymer matrix composites: Techniques and applications, 33-55.
- Hu, N., Liu, Y., Li, Y., Peng, X. and Yan, B. (2010), "Optimal excitation frequency of lamb waves for delamination detection in CFRP laminates", J. Compos. Mater., 44(13), 1643-1663. https://doi.org/10.1177/0021998309353965
- Huang, S.M., Plaskowski, A.B., Xie, C.G. and Beck, M.S. (1989), "Tomographic imaging of two-flow component flow using capacitance sensor", J. Phys. E:Sci. Instrum., 22, 173-177. https://doi.org/10.1088/0022-3735/22/3/009
- Jaworski, A.J. and Bolton, G.T. (2000), "The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity", Measurement Sci. Technol., 11(6), 743-757. https://doi.org/10.1088/0957-0233/11/6/318
- Jiang, S., Li, D., Zhou, C. and Zhang, L. (2014), "Capabilities of stochastic response surface method and response surface method in reliability analysis", Struct. Eng. Mech., 49(1), 111-128. https://doi.org/10.12989/sem.2014.49.1.111
- Li, H. and Huang, Z. (2000), "Special measurement technology and application", Zhejiang University Press, Hangzhou.
- Liu, Z., Yu, H., He, C. and Wu, B. (2013), "Delamination damage detection of laminated composite beams using air-coupled ultrasonic transducers", Sci. China Phys., Mech. Astronomy, 56(7), 1269-1279. https://doi.org/10.1007/s11433-013-5092-7
- Liu, Z., Yu, H., He, C. and Wu, B. (2014), "Delamination detection in composite beams using pure Lamb mode generated by air-coupled ultrasonic transducer", J. Intel. Mater. Syst. Struct., 25(5), 541-550. https://doi.org/10.1177/1045389X13493339
- Mohamad, E.J., Rahim, R.A., Leow, P.L., Fazalul, Rahiman, M.H., Marwah, O.M.F., Nor Ayob, N.M., Rahim, H.A. and Mohd Yunus, F.R. (2012), "An introduction of two differential excitation potentials technique in electrical capacitance tomography", J. Sens. Actuat. A, 180, 1-10. https://doi.org/10.1016/j.sna.2012.03.025
- Mohamad, E.J., Rahim, R.A., Rahiman, M.H.F., Ameran, H.L.M., Muji, S.Z.M. and Marwah, O.M.F. (2016), "Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor", J. Flow Measure. Instrument., 47, 62-70. https://doi.org/10.1016/j.flowmeasinst.2015.12.004
- Myers, R. and Montgomery, D.C. (2002), "Response surface methodology process and product optimization using designed experiments", 2nd ed. New York: Wiley-Interscience.
- Nguyen, K., Ho, D. and Kim, J. (2013), "Damage detection in beam-type structures via PZT", Smart Struct. Syst., 11(2), 217-240. https://doi.org/10.12989/sss.2013.11.2.217
- Pei, T. and Wang, W. (2009), "Simulation analysis of sensitivity for electrical capacitance tomography", Proceedings of Ninth International Conference on Electronic Measurement & Instruments (ICEMI 2009).
- Peng, Q., Zhang, X., Huang, C., Carter, E.A. and Lu, G. (2012), "Hierarchical fiber-optic delamination detection system for carbon fiber reinforced plastic structures", J. Model. Simulat. Mater. Sci. Eng., 18, 1-14.
- Saeedifar, M., Fotouhi, M., Najafabadi, M.A. and Toudeshky, H.H. (2015), "Prediction of delamination growth in laminated composites using acoustic emission and Cohesive Zone Modeling techniques", J. Compos. Struct., 124, 120-127. https://doi.org/10.1016/j.compstruct.2015.01.003
- Saeedifar, M., Fotouhi, M., Najafabadi, M.A., Toudeshky, H.H. and Minak, G. (2016), "Prediction of quasistatic delamination onset and growth in laminated composites by acoustic emission", J. Compos. Part B: Eng., 85, 113-122.
- Sardeshpande, M.V., Harinarayan, S. and Ranade, V.V. (2015), "Void fraction measurement using electrical capacitance tomography and high speed photography", J. Chem. Eng. Res. Des., 9(4), 1-11.
- Spiegel, M.D. (2014), "Damage detection in composite materials using PZT actuators and sensors for structural health monitoring", Master, Department of Electrical and Computer Engineering, University of Alabama.
- Todoroki, A., Tanaka, Y. and Shimamura, Y. (2004), "Multi-prove electric potential change method for delamination monitoring of graphite/epoxy composite plates using normalized response surfaces", J. Compos. Sci. Technol., 64, 749-758. https://doi.org/10.1016/j.compscitech.2003.08.004
- Tompson, C.G. and Johnson, W.S. (2011), "Determination of the nontraditional lay-up influence and loading configuration on fatigue damage development under bearing-bypass loading conditions using radiography", J. Compos. Mater., 45(22), 2259-2269. https://doi.org/10.1177/0021998311401078
- Toscano, C., Riccio, A., Camerlingo, F. and Meola, C. (2012), "Lock in thermography to monitor propagation of delamination in CFRP composites during compression tests", 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, June.
- Yang, W.Q. (1997), "Modelling of capacitance sensor", IEEE proceedings: Measurement Science and Technology, 144(5), 203-208. https://doi.org/10.1049/ip-smt:19971425
- Yang, W.Q. and York, T.A. (1999), "New AC-based capacitance tomography system", IEEE proceedings: Measurement Science and Technology, 146(1), 47-53. https://doi.org/10.1049/ip-smt:19990008
- Yang, W.Q., Beck, M.S. and Byars, M. (1995b), "Electrical capacitance tomography -from design to applications", Measure. Control, 28(9), 261-266. https://doi.org/10.1177/002029409502800901
- Yang, W.Q., Stott, A.L., Beck, M.S. and Xie, C.G. (1995a), "Development of capacitance tomographic imaging systems for oil pipeline measurements", Rev. Sci. Instr., 66(8), 4326. https://doi.org/10.1063/1.1145322
- Yeum, C.M., Sohn, H., Ihn, J.B. and Lim, H.J. (2012), "Delamination detection in a composite plate using a dual piezoelectric transducer network", J. Compos. Struct., 94, 3490-3499. https://doi.org/10.1016/j.compstruct.2012.06.003
- Zhang, W., Wang, C., Yang, W. and Wang, C. (2014), "Application of electrical capacitance tomography in particulate process measurement - A review", J. Adv. Pow. Technol., 25(1), 174-188. https://doi.org/10.1016/j.apt.2013.12.003
Cited by
- Fatigue damage identification for composite pipeline systems using electrical capacitance sensors vol.27, pp.8, 2018, https://doi.org/10.1088/1361-665X/aacc99
- Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors vol.5, pp.4, 2017, https://doi.org/10.12989/aas.2018.5.4.499
- Deep Learning-Based Damage, Load and Support Identification for a Composite Pipeline by Extracting Modal Macro Strains from Dynamic Excitations vol.8, pp.12, 2017, https://doi.org/10.3390/app8122564
- A Comparison of Three Different Methods for the Identification of Hysterically Degrading Structures Using BWBN Model vol.4, pp.None, 2017, https://doi.org/10.3389/fbuil.2018.00080
- Applying deep learning and wavelet transform for predicting the vibration behavior in variable thickness skew composite plates with intermediate elastic support vol.23, pp.4, 2017, https://doi.org/10.21595/jve.2020.21480
- Deep Learning-Based Crack Identification for Steel Pipelines by Extracting Features from 3D Shadow Modeling vol.11, pp.13, 2017, https://doi.org/10.3390/app11136063