DOI QR코드

DOI QR Code

고염/고방사성 폐액 내 Cs 제거를 위한 복합 흡착제 합성 및 특성 연구

Study of Composite Adsorbent Synthesis and Characterization for the Removal of Cs in the High-salt and High-radioactive Wastewater

  • 투고 : 2016.07.11
  • 심사 : 2016.09.07
  • 발행 : 2017.03.30

초록

본 연구에서는 고염/고방사성 폐액 내 함유된 주요 고방사성핵종인 Cs 제거를 목적으로 고효율의 복합 흡착제(potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) 합성 및 이의 적용성을 평가하였다. 복합 흡착제는 Cs을 비롯한 다른 입자를 수용할 수 있는 CHA를 지지체로 선정하였으며, $CoCl_2$$K_4Fe(CN)_6$ 용액의 단계적인 함침/침전을 통해 PCFC를 CHA 세공 내에 고정화함으로써 합성하였다. 복합 흡착제의 합성 시 평균 입자크기가 $10{\mu}m$ 이상의 CHA를 지지체로 사용할 경우, PCFC 입자는 안정적인 형태로 고정화되었다. 또한, 합성 시 복합 흡착제의 정제를 증가시키는 세척 방법을 최적화함으로써, 복합 흡착제의 물리적 안정성이 향상되었다. 최적의 합성법을 통해 얻은 복합 흡착제에 의한 Cs 흡착 시, 담수(무염조건) 및 해수(고염 조건)에서 모두 빠른 흡착 속도를 보였으며, 염 농도와 무관하게 비교적 높은 분배계수 값($10^4mL{\cdot}g^{-1}$ 이상)을 나타내었다. 그러므로, 본 연구에서 합성한 복합 흡착제는 CHA 및 PCFC가 각각 가지고 있는 물리적 안정성과 Cs에 높은 선택성 등을 고려하여 촤적화한 소재이며, 고염/고방사성폐액에 함유되어 있는 Cs을 고효율로 신속하게 제거할 수 있음을 알 수 있다.

For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with $CoCl_2$ and $K_4Fe(CN)_6$ solutions. When CHA, with average particle size of more than $10{\mu}m$, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than $10^4mL{\cdot}g^{-1}$) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

키워드

참고문헌

  1. P. Sylvester, T. Milner, and J. Jensen, "Radioactive Liquid Waste Treatment at Fukushima Daiichi", J. Chem. Technol. Biotechnol., 88, 1592-1596 (2013). https://doi.org/10.1002/jctb.4141
  2. Report of Japanese government to the IAEA Ministerial Conference on nuclear saferty, "The Accident at TEPCO's Fukushima Nuclear Power Stations", June (2011).
  3. International Atomic Energy Agency, "Handing and Treatment of Radioactive Aqueous Wastes", IAEA Report, IAEA-TECDOC-654 (1992).
  4. T.D. Clarke and C.M. Wai, "Selective Removal of Cesium from Acid Solutions with Immobilized Copper Ferrocyanide", Anal. Chem., 70, 3708-3711 (1998). https://doi.org/10.1021/ac971138b
  5. A.K. Vipin, S. Ling, and B. Fugtsu, "Sodium Cobalt Hexacynoferrate Encapsulated in Alginate Vesicle with CNT for both Cesium and Strontium Removal", Carbohydr. Polym., 111, 477-484 (2014). https://doi.org/10.1016/j.carbpol.2014.04.037
  6. R. Saberi, A. Nilchi, S.R. Garmarodi, and R. Zarghami, "Adsorption Characteristic of $^{137}Cs$ from Aqueous Solution Using PAN-Based Sodium Titanosilicate Composite", J. Radioanal. Nucl. Chem., 284, 461-469 (2010). https://doi.org/10.1007/s10967-010-0499-3
  7. P. Cappelletti, G. Rapisardo, B. de Gennaro, A. Colella, A. Langella, S.F. Graziano, D.L. Bish, and M. de Gennaro, "Immobiliztion of Cs and Sr in Aluminosilicate Matrices Derived from Natural Zeolites", J. Nucl. Mater., 414, 451-457 (2011). https://doi.org/10.1016/j.jnucmat.2011.05.032
  8. B. Yu, J. Chen, and C. Song, "Crystalline Silicotitanate : A New Type of Ion Exchanger for Cs Removal from Liquid Waste", J. Mater. Sci. Technol., 18(3), 206-210 (2002)
  9. M. Dubourg, "Review of Advanced Methods for Treating Radioactive Contaminated Water", Radioprotection., 33(1), 35-46 (1998). https://doi.org/10.1051/radiopro:1998102
  10. E.D. Collins, D.O. Compbell, L.J. King, J.B. Knauer, and R.M. Wallace, "Evaluation of Zeolite Mixture for Decontaminating High-Activity-Level Water at the Three Mile Island Unit 2 Nuclear Power Station", IAEA-TC-518/4 (1984).
  11. W. Plazinski and W. Rudzinski, "Modeling the Effect of Surface Heterogeneity in Equilibrium of Heavy Metal Ion Biosorption by Using the Ion Exchange Model", Environ. Sci. Technol., 43(19), 7465-7471 (2009). https://doi.org/10.1021/es900949e
  12. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zang, Z. Lei, and Y. Yang, "Adsorption of Cesium from Aqueous Solution Using Agricultural Residue-Walnut Shell: Equilibrium, Kinetic and Thermodynamic Modeling Studies", Water. Res., 47(7), 2563-2571 (2013). https://doi.org/10.1016/j.watres.2013.02.014
  13. H. Mimura, M. Kimura, and K. Akiba, "Selective Removal of Cesium from Sodium Nitrate Solutions by Potassium Nickel Hexacyanoferrate - Loaded Chabazites", Sep. Sci. Technol., 34(1), 17-28 (1999). https://doi.org/10.1081/SS-100100633
  14. T. Vincent, C. Vincent, and E. Guibal, "Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents-A Mini Review", Molecules., 20(11), 20582-20613 (2015). https://doi.org/10.3390/molecules201119718
  15. F.N. Ridha, Y. Yang, and P.A. Webley, "Adsorption Characteristics of a Fully Exchanged Potassium Chabazite Zeolite Prepared from Decomposition of Zeolite Y", Microporous. Mesoporous. Mater., 117(1), 497-507 (2009). https://doi.org/10.1016/j.micromeso.2008.07.034
  16. K.Y. Lee, K.Y. Kim, M. Park, J. Kim, M. Oh, E.H. Lee, D.Y. Chung, and J.K. Moon, "Novel Application of Nanozeolite for Radioactive Cesium Removal from High-salt Wastewater", Water. Res., 95, 134-141 (2016). https://doi.org/10.1016/j.watres.2016.02.052
  17. K.Y. Lee, M. Park, J. Kim, M. Oh, E.H. Lee, K.W. Kim, D.Y. Chung, and J.K. Moon, "Equilibrium, Kinetic and Thermodynamic Study of Cesium Adsorption onto Nanocrystalline Mordenite from High-salt Solution", Chemosphere, 150, 765-771 (2016). https://doi.org/10.1016/j.chemosphere.2015.11.072
  18. M. Bourgogne, J.L. Guth, and R. Wey, US patent, No.4, 4503024 (1985).
  19. K.Y. Lee, J. Kim, K.W. Kim, D.Y. Chung, and J.K. Moon. May 10 2016, "Synthesis of Functionalized Zeolite for Radioactive Cesium Removal and Its Thermal Stability Study" 47th Annual Meeting on Nuclear Technology, Hamburg. Accessed Jun. 15 2016. Available from: http://www.kernenergie.de/kernenergie/service/shop/tagungsbaende/index.php.
  20. D.H. de Boer and G. Crosby, "Evaluating the Potential of SEM/EDS Analysis for Fingerprinting Suspended Sediment Derived from Two Contrasting Topsoils", Catena., 24(4), 243-258 (1995). https://doi.org/10.1016/0341-8162(95)00029-4
  21. TEPCO Report, June 2 2011. "Storage and Treatment Plan for the Water Containing High-Level Radioactive Materials at Fukushima Daiichi Nuclear Power Station." TEPCO website. Accessed Mar. 7 2016. Available from: http://www.tepco.co.jp/en/press/corp-com/release/betu11_e/images/110603e12.pdf.
  22. P. Rafferty, S.Y. Shiao, C.M. Binz, and R.E. Meyer, "Adsorption of Sr(II) on Clay Minerals: Effects of Salt Concentration, Loading, and pH", J. inorg. nucl. Chem., 43(4), 797-805 (1981). https://doi.org/10.1016/0022-1902(81)80224-2
  23. Y.S. Ho and G. McKay, "Sorption of Dye from Aqueous Solution by Peat", Chem. Eng. J., 70(2), 115-124 (1998). https://doi.org/10.1016/S0923-0467(98)00076-1
  24. C.S. Cundy and P.A. Cox, "The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism", Microporous. Mesoporous. Mater., 82(1), 1-78 (2005). https://doi.org/10.1016/j.micromeso.2005.02.016
  25. K. Sangwal, "Additive and Crystallization Processes: from Fundamentals to Applications", John Wiely & Sons, West Sussex, England (2007).
  26. E.H. Lee, K.Y. Lee, K.W. Kim, I.S. Kim, D.Y. Chung, and J.K. Moon, "Removal of Cs by Adsorption with IE911(Crystalline Silicotitanate) from High-radioactive Seawater Waste", J. Korean Radioact. Waste Soc., 13(3), 171-180 (2015). https://doi.org/10.7733/jnfcwt.2015.13.3.171
  27. J.A. Davis and D.B. Kent, "Surface Complexation Modeling in Aqueous Geochemistry", Rev. Mineral. Geochem., 23(1), 177-260 (1990).
  28. R. Leyva-Ramos, J.E. Monsivis-Rocha, A. Aragon-Pina, M.S. Berber-Mendoza, R.M. Guerrero-Coronado, P. Alonso-Davila, and J. Mendoza-Barron, "Removal of Ammonium from Aqueous Solution by Ion Exchange on Natural and Modified Chabazite", J. Environ. Manag., 91(12), 2662-2668 (2010). https://doi.org/10.1016/j.jenvman.2010.07.035
  29. L. Zhao, J. Dudek, H. Polkowska-Motrenko, and A.G. Chmielewski, "A Magnetic Nanosorbent for Cesium Removal in Aqueous Solutions", Radiochim. Acta., 104(6), 423-433 (2016). https://doi.org/10.1515/ract-2015-2512
  30. V. Carunchio, U. Biader-Ceipidor, and A. Messina, "Solvent Effects on the Formation Equilibrium of Cobalt(II)-Chloride System in Acetone-Water Mixture", Inorganica. Chim. Acta., 6, 613-618 (1972). https://doi.org/10.1016/S0020-1693(00)91867-X
  31. A.H. Zeltmann, N.A. Matwiyoff, and L.O. Morgan, "Nuclear Magnetic Resonance of Oxygen-17 and Chlorine-35 in Aqueous Hydrochloric Acid Solutions of Cobalt(II). I. Line Shifts and Relative Abundances of Solution Species", J. Phys. Chem., 72(1), 121-127 (1968). https://doi.org/10.1021/j100847a023
  32. V. Gutmann, "Coordination Chemistry in Non-Aqueous Solutions", Springer Science & Business Media (2012).
  33. U.B. Ceipidor, V. Carunchio, G. D'Ascenzo, and M. Tomassetti, "Cobalt(II)-Chloride System in Acetone: Determination of Some Heats of Formation by Flow Calorimetry", Thermochimica. Acta., 35(2), 197-200 (1980). https://doi.org/10.1016/0040-6031(80)87193-0

피인용 문헌

  1. High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System vol.16, pp.1, 2018, https://doi.org/10.7733/jnfcwt.2018.16.1.49