DOI QR코드

DOI QR Code

아스팔트 표면 강화공법의 현장 적용성 개선 방안 연구

A Study on Improvement of Field Implementation of Asphalt Surface Reinforcement Method

  • 조신행 (경기대학교 대학원 토목공학과) ;
  • 김경남 (경기대학교 대학원 토목공학과) ;
  • 김낙석 (경기대학교 토목공학과)
  • 투고 : 2017.01.24
  • 심사 : 2017.03.04
  • 발행 : 2017.04.01

초록

아스팔트 콘크리트 포장의 예방적 유지보수 공법인 아스팔트 표면 강화공법의 현장 적용성을 개선하기 위한 연구를 수행하였다. 포장표면상태에 따른 최적살포량을 결정하기 위해 평균조직깊이를 측정하여 투입량을 산정하면 기존 30%의 재료손실을 15% 이내로 절감할 수 있다. 양생시간을 30분 이내로 단축하기 위해 $317kcal/m^2$의 열량이 필요하며, 이를 위해 가열양생장치의 설계 용량은 380,000 kcal/hr 이상이 필요하다. 아스팔트 표면강화공법의 특성상 소성변형이 심각해지기 전에 약간의 균열이 발생하는 시기에 적용하는 것이 바람직하며, 포장상태 조사자료분석을 통해 균열율 3~4%일 때 표면강화공법을 적용하는 것이 최적 적용시점으로 나타났다. 표면강화제를 $50^{\circ}C$로 가열할 경우 점도가 낮아져 작업성의 개선과 균열폭 1 mm 에서도 충분한 침투깊이를 확보할 수 있다. 본 연구를 통해 아스팔트 표면강화 공법의 현장 적용성을 개선하기 위한 방안을 도출하였으며 이는 효율성 개선을 위한 자동화 시공장비 개발의 기초자료로 활용 될 것이다.

A study was carried out to improve the field implementation of asphalt surface reinforcement method which is a preventive maintenance. Mean Texture Depth (MTD) was measured to quantify the surface condition and used to determine the optimum application rate. Determining the application rate using MTD can reduce the material loss from 30% to 15%. In order to reduce the curing time to 30 minutes, the heat capacity of $317kcal/m^2$ is required. Therefore, the design capacity of the heating curing device requires more than 380,000 kcal/hr. The asphalt surface reinforcement method is preferably applied at a time when slight cracking occurs before the permanent deformation becomes serious. Through the analysis of the pavement survey data, it was decided to apply the surface reinforcement method at the crack rate of 3~4%. Heating the surface reinforcement agent to $50^{\circ}C$ improves workability and ensures sufficient penetration depth even at a crack width of 1 mm. The results will be utilized as basic data for the development of automated construction equipment for efficiency improvement.

키워드

참고문헌

  1. Brown, E. R. (1988). Preventative Maintenance of Asphalt Concrete Pavements, National Center for Asphalt Technology, NCAT Report 88-01.
  2. Brownridge, J. (2010). "The Role of an Asphalt Rejuvenator in Pavement Preservation : Use and Need for Asphalt Rejuvenation." The First International Conference on Pavement Preservation, pp. 351-364.
  3. Chiu, C. and Lee, M. "Effectiveness of seal rejuvenators for bituminous pavement surfaces." Journal of Testing and Evaluation, Vol. 34, No. 5, 2006, pp. 1-5.
  4. Jo, S. H., Lee, S. H., Yoo, I. K. and Kim, N. S. (2012). "A development of skid resistance prediction model considering water film thickness and vehicle speed." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3D, pp. 223-229 (in Korean). https://doi.org/10.12652/KSCE.2012.32.3D.223
  5. Korea Testing & Research Institute (2014). The Evaluation of Patentability 'Waterproof and Surface Reinforcing Material of Asphalt Pavement, and Manufacturing Method There of, and Reinforcing Method of Asphalt Pavement using Waterproof and Surface Reinforcing Material', Korea Testing & Research Institute (in Korean).
  6. Korea Testing & Research Institute (2015). Development of Asphalt Coating Agent for Extending Service Life of 200%, Korea Testing & Research Institute (in Korean).
  7. Lee, K. H., Lim, J. S., Jeong, K. D., Im, J. H., Kwon, S. A. and Kim, Y. J. (2016). "Finite element analysis of heat transfer effect on asphalt pavement heated by pre-heater unit in hot in-place recycling." International Journal of Highway Engineering, Vol. 18, No. 2, pp 73-82 (in Korean). https://doi.org/10.7855/IJHE.2016.18.2.073
  8. ASTM E965 Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique.
  9. KS M5000 Testing Method for Organic Coatings and Their Related Materials.