DOI QR코드

DOI QR Code

Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects

축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석

  • Received : 2016.11.07
  • Accepted : 2017.01.03
  • Published : 2017.04.01

Abstract

Bending and axial forces simultaneously occur at the cross-section of a shotcrete lining reinforced with steel supports due to the tunnel geometry. The shotcrete has changing flexural stiffness depending on the axial forces and, as a result, severely nonlinear behavior. The mechanical properties of a shotcrete-steel composite also depend on the type of steel support. This study presents a fiber section element model considering the effect of axial force to evaluate the nonlinear behavior of a shotcrete-steel composite. Additionally, the model was used to analyze the effects of different types of steel supports on the load capacity. Furthermore, a modified hyperbolic model for ground reaction, including strain-softening, is proposed to account for the ground-lining interaction. The model was validated by comparing the numerical results with results from previous load test performed on arched shotcrete specimens. The changes in mechanical responses of the lining were also investigated. Results show a lining with doubly reinforcement rebar has similar load capacity as a lining with H-shaped supports. The use of more materials for the steel support enhances the residual resistance. For all types of steel reinforcement, the contribution of steel supports during peak load decreases as the ground becomes stiffer.

강지보로 보강된 터널 숏크리트 라이닝은 그 기하학적 형태로 인해 외부하중이 작용됨에 따라 휨 모멘트와 축력이 동시에 발생하게 된다. 숏크리트는 축력 수준에 따라 휨 강성이 달라지며, 이로 인한 심한 비선형 거동을 보인다. 또한 강지보 유형에 따라 역학적으로 상이한 지보 성능을 가진다. 본 연구에서는 화이버 단면 요소(fiber section element)를 이용해 압축력과 휨 모멘트를 동시에 받는 강지보-숏크리트 라이닝의 비선형합성거동을 평가할 수 있는 수치모델을 제시하였고, 이를 활용해 강지보 유형에 따른 합성지보 성능을 수치적으로 분석하였다. 또한, 지반-구조물 상호작용을 구현하기 위해 지반의 연화(softening) 거동을 고려하여 수정된 hyperbolic 모델을 제시하였다. 제시된 수치모델은 기존 아치형 실험체의 하중실험 결과와 해석결과를 비교하여 검증하였으며, 수치해석을 통해 강지보 유형에 따른 라이닝의 합성거동을 분석하였다. 해석결과를 통해, 복철근 형태의 강지보가 기존 H형강과 유사한 극한 하중 지지력을 가지는 것을 확인하였다. 또한 강재량 증가가 잔류 지지력 향상에 크게 기여하였으며, 지보재 주변의 지반강성이 증가함에 따라 강지보 유형에 따른 최대 하중지지력 개선 효과는 작아짐을 확인하였다.

Keywords

References

  1. Darvall, L. P. and Mendis, P. (1985). "Elastic-plastic softening analysis of plane frames." Journal of Structural Engineering, ASCE, Vol. 111, No. 4, pp. 871-888. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(871)
  2. Do, N. A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014). "The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method." European Journal of Environmental and Civil Engineering, Vol. 18, No. 4, pp. 489-510.
  3. Elsaigh, W. A., Robberts, J. M. and Kearsley, E. P. (2011). "Modeling the behavior of steel-fiber reinforced concrete ground slabs. I : Development of material model." Journal of Transportation Engineering, ASCE, Vol. 137, No. 12, pp. 882-888. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000276
  4. Filippou, F. C. D., Ambrisi, A. and Issa, A. (1999). "Effects of reinforcement slip on hysteretic behavior of reinforced concrete frame members." ACI Structural Journal, Vol. 96, No. 3, pp. 327-335.
  5. Grimstad, E., Kankes, K., Bhasin, R., Magnussen, A. W. and Kaynia, A. (2002). Rock mass quality Q used in designing reinforced ribs of sprayed concrete and energy absorption. Norwegian Geotechnical Institute.
  6. Ha, T. W., Kim, D. Y., Shin, Y. W. and Yang, H. S. (2008). "Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis." Tunnelling Technology, Korean Tunnelling and Underground Space Association, Vol. 10, No. 3, pp. 269-282 (in Korean).
  7. Hur, J. S., Kim, S. R., Hwang, J. D., Seo, Y. W. and Jung, M. K. (2013). "A study on the performance-based design methodology for tunnels through case study on the tunnel built by the prescribed design." Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 4, pp. 415-429 (in Korean). https://doi.org/10.9711/KTAJ.2013.15.4.415
  8. Jeon, S. H., Shin, Y. W. and Yoo, H. K. (2011). "A study on concrete lining stress changes considering load supporting capacity of primary supports of NATM tunnel." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 4, pp. 147-154 (in Korean).
  9. Ji, Y. H., Jeong, J. S., Jeong, C. K. and Lee, S. H. (2011). "A study on the flexural toughness characteristics of the half-circle type steel fiber reinforced shotcrete." Journal of Korean Tunnelling and Underground Space Association, Vol. 13, No. 2, pp. 83-95 (in Korean).
  10. Kent, D. C. and Park, R. (1971). "Flexural members with confined concrete." Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
  11. Kim, J. S., Yu, J. H. and Kim, M. K. (2014). "Numerical study on shotcrete lining with steel reinforcement using a fiber section element." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 919-930 (in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0919
  12. Kim, S. H., Park, I. J. and Kim, J. T. (2011). "The strength characteristic of shotcrete reinforced with improved shape steel fiber." Journal of the Korean Geotechnical Society, Vol. 27, No. 12, pp. 127-136 (in Korean). https://doi.org/10.7843/kgs.2011.27.12.127
  13. Korea Expressway Corporation (2001). Enhancement and quality control of steel fiber reinforced shotcrete (II) (in Korean).
  14. Lee, D. H., Lee, S. K. and Bak, D. H. (2001). "Design of tunnelling applied NMT in depth rock mass." Proc. of Korean Society for Rock Mechanics Conference, Korean Society for Rock Mechanics, pp. 1-15 (in Korean).
  15. Lee, S. D., Park, Y. J., Lim, D. C., Son, J. H., You, K. H. and Kim, S. M. (2008). "A numerical study on the behavior of shotcrete reinforced by various steel supports." Tunnel & Underground Space, Korean Society for Rock Mechanics, Vol. 18, No. 3, pp. 226-238 (in Korean).
  16. Lee, S. P., Ryu, J. H., Lee, S. D., Jeon, S. W. and Lee, C. I. (2007). "Performance improvement and durability evaluation of shotcrete for permanent tunnel support." Tunnel & Underground Space, Korean Society for Rock Mechanics, Vol. 17, No. 4, pp. 266-284 (in Korean).
  17. Leung, C. K. Y., Lai, R. and Lee, A. Y. F. (2005). "Properties of wet-mixed fiber reinforced shotcrete and fiber reinforced concrete with similar composition." Cement and Concrete Research, Vol. 35, No. 4, pp. 788-795. https://doi.org/10.1016/j.cemconres.2004.05.033
  18. Mashimo, H., Isago, N., Yoshinaga, S., Shiroma, H. and Baba, K. (2002). "Experimental investigation on load-carrying capacity of concrete tunnel lining." Proc. of the 28 th ITA General Assembly and World Tunnel Congress, ITA, Sydeny, Australia, pp. 1-10.
  19. McKenna, F. (2011). "OpenSees : a framework for earthquake engineering simulation." Computing in Science and Engineering, Vol. 13, No. 4, pp. 58-66.
  20. Moon, S. H., Shin, Y. W., Kim, S. H. and Yoo H. K. (2012). "A study on load bearing capacity of composite member with steel rib and shotcrete in NATM tunnel." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5, pp. 221-229 (in Korean).
  21. Oreste, P. P. (2007). "A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports." Tunnelling and underground space technology, Vol. 22, No. 2, pp. 185-205. https://doi.org/10.1016/j.tust.2006.05.002
  22. Park, S. S. and Kim, S. J. (2013). "Effect of steel-fiber distribution on flexural strength and toughness of shotcrete mimicked-concrete specimen." Journal of the Korean Geotechnical Society, Vol. 29, No. 6, pp. 53-62 (in Korean). https://doi.org/10.7843/kgs.2013.29.6.53
  23. Park, Y. J., Lee, J. K., Noh, B. K., You, K. H. and Lee, S. D. (2010). "Flexural behavior of reinforced ribs of shotcrete for various configurations of reinforcements." Tunnel & Underground Space, Korean Society for Rock Mechanics, Vol. 20, No. 3, pp. 169-182 (in Korean).
  24. Shin, H. S., Kim, D. G., Chang, S. H. and Bae, G. J. (2006). "A study on failure mechanism and load-bearing capacity of single-shell tunnel lining." Tunnelling Technology, Korean Tunnelling and Underground Space Association, Vol. 8, No. 3, pp. 273-287 (in Korean).
  25. Spacone, E., Filippou, F. C. and Taucer, F. F. (1996a). "Fibre beamcolumn model for non-linear analysis of R/C frames : Part I. Formulation." Earthquake Engineering and Structural Dynamics, Vol. 25, No. 7, pp. 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  26. Taucer, F., Spacone, E. and Filippou, F. C. (1991). A fiber beamcolumn element for seismic response analysis of reinforced concrete structures. Report UCB/EERC 91/17. Earthquake Engineering Research Center, Univ. of California, Berkeley.
  27. Yoo, C. S., Kim, Y. J., Bae, G. J. and Moon, H. D. (1997). "An experimental study on load bearing capacity of lattice girder as a steel support in tunnelling." Journal of the Korean Geotechnical Society, Vol. 13, No. 4, pp. 163-176 (in Korean).
  28. You, K. H., Jung, J. S. and Park, Y. J. (2008). "A tunnel mock-up test and numerical analysis on steel fiber reinforced shotcrete." Tunnel & Underground Space, Korean Society for Rock Mechanics, Vol. 18, No. 2, pp. 107-117 (in Korean).