DOI QR코드

DOI QR Code

EuTroLoy 16006 분말을 이용한 내열강의 레이저 클래딩에 관한 연구(I) - 공정변수에 따른 1패스 클래드 층의 특성 -

The Study on Laser Cladding of Heat Resisting Steel Using EuTroLoy 16006 Powder(I) - Characteristics of 1 Pass Clad Layer with Process Parameters -

  • 투고 : 2016.08.05
  • 심사 : 2016.10.17
  • 발행 : 2017.04.01

초록

최근 심각한 환경오염과 경제 불황으로 인해 리엔지니어링에 대한 관심이 증가하고 있다. 조선분야에 대한 리엔지니어링은 꾸준히 진행되어 왔으나 국내에서의 선박 수리 및 유지보수 산업의 기술력과 인지도는 조선해양산업에 비해 떨어진다. 이러한 문제를 해결하기 위해 기술개발의 일환으로 레이저 클래딩을 주목할 수 있다. 레이저 클래딩은 희석률이 낮고, 기공이 거의 존재하지 않는 우수한 클래드 층을 형성하므로 본 연구는 선박용 배기밸브 페이스에 레이저 클래딩 적용을 위한 기초연구로써 다양한 공정변수에 따른 1패스 클래드 층의 특성을 조사하였다. 그 결과, 출력이 증가할수록 클래드 층의 폭은 넓어지고 높이는 감소하였다. 또한 클래드 층의 경도를 측정했을 때 경도 값이 점차 감소하였으며 EDS 성분 분석을 통해 클래드 층 전체가 희석되는 것을 확인할 수 있었다.

Re-engineering is gaining attention due to severe environmental pollution and economic crisis. Although re-engineering in shipbuilding has been carried out steadily, technological advancements, domestic ship repair and maintenance industries are not as prevalent as shipbuilding industries. In order to solve this problems, laser cladding can significantly aid with technical development. Laser cladding produces an outstanding clad layer with minimal dilution and little porosity. In this study, prior to applying laser cladding to an exhaust valve face, the effects of various parameters that affect the characteristics of the 1 pass clad layer were investigated. When laser power was increased, the clad layer width became broader and the height was decreased. In addition, it was identified that the hardness of the clad layer was inversely proportional to the power, and the entire clad layer was diluted through an EDS chemical composition analysis.

키워드

참고문헌

  1. Torims, T., 2013, "The Application of Laser Cladding to Mechanical Component Repair, Renovation and Regeneration," DAAAM INTERNATIONAL SCIENTIFIC BOOK, Chapter 32, pp. 587-608.
  2. Adam. P., Dariusz, B., Andrzej, Y., Bartlomiej, D., Marek, G. and Monika, K., 2013, "Laser Cladding of Stellite 6 on Low Carbon Steel for Repairing Components in Automotive Application using Disk Laser," Archives of Mechanical Technology and Automation, Vol. 33, No. 2, pp. 25-34.
  3. Toyserkani, E., Khajepour, A. and Corbin, S., 2005, "Laser Cladding," CRC Press LLC, London, pp. 3-40.
  4. Wang, Y., Zhao, S., Gao, W., Zhou, C., Liu, F. and Lin, X., 2014, "Microstructure and Properties of Laser Cladding FeCrBSi Composite Powder Coatings with Higher Cr Content," Journal of Materials Processing Technology, Vol. 214, pp. 899-905. https://doi.org/10.1016/j.jmatprotec.2013.12.009
  5. Lee, J.-H., Suh, M.-H. and Han, Y.-H., 2000, "Laser Cladding," Journal of KWS, Vol. 18, No. 2, pp. 154-162.
  6. Brandt, M., Sun, S., Alam, N., Bendeich, P. and Bishop, A., 2009, "Laser Cladding Repair of Turbine Blades in Power Plants: From Research to Commercialisation," International Heat Treatment & Surface Engineering, Vol. 3, No. 3, pp. 1-10. https://doi.org/10.1179/174951509X467110
  7. Koehler, H., Partes, K., Seefeld, T. and Vollertsen, F., 2010, "Laser Reconditioning of Crankhafts: From Lab to Application," Physics Procedia, Vol. 5, pp. 387-397. https://doi.org/10.1016/j.phpro.2010.08.160
  8. Schneider, M., 1998, "Laser Cladding with Powdereffect of Some Machining Parameters on Clad Properties," Doctorate Thesis at the University of Twente, The Netherlands, p. 31.
  9. Von Wielligh, L. G., 2008, "Characterizing the Influence of Process Variables in Laser Cladding Al-20 wt.%Si onto an Aluminum Substrate," Master Degree Thesis at the Nelson Mandela Metropolitan University, South African, pp. 25-30, 116-118.
  10. Steen, W. M., 1997, "Laser Material Processing," Springer, United States, p. 50.