참고문헌
- A. Knall and C. Slugovc, Inverse electron demand Diels-Alder (IEDDA)-initiated conjugation: A (high) potential click chemistry scheme, Chem. Soc. Rev., 42, 5131-5142 (2013). https://doi.org/10.1039/c3cs60049a
- N. K. Devaraj and R. Weissleder, Biomedical applications of tetrazine cycloadditions, Acc. Chem. Res., 44, 816-827 (2011). https://doi.org/10.1021/ar200037t
- J. Seckute and N. K Devaraj, Expanding room for tetrazine ligations in the in vivo chemistry toolbox, Curr. Opin. Chem. Biol., 17, 761-767 (2013). https://doi.org/10.1016/j.cbpa.2013.08.004
- M. L. Blackman, M. Royzen, and J. M. Fox, Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity, J. Am. Chem. Soc., 130, 13518-13519 (2008). https://doi.org/10.1021/ja8053805
- J. Schoch, M. Staudt, A. Samanta, M. Wiessler, and A. Jaschke, Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconjug. Chem., 23, 1382-1386 (2012). https://doi.org/10.1021/bc300181n
- N. K. Devaraj, R. Weissleder, and S. A. Hilderbrand, Tetrazinebased cycloadditions: Application to pretargeted live cell imaging, Bioconjug. Chem., 19, 2297-2299 (2008). https://doi.org/10.1021/bc8004446
- W. Chen, D. Wang, C. Dai, D. Hamelberg, and B. Wang, Clicking 1, 2, 4, 5-tetrazine and cyclooctynes with tunable reaction rates, Chem. Commun., 48, 1736-1738 (2012). https://doi.org/10.1039/C2CC16716F
- D. M. Patterson, L. A. Nazarova, B. Xie, D. N. Kamber, and J. A. Prescher, Functionalized cyclopropenes as bioorthogonal chemical reporters. J. Am. Chem. Soc., 134, 18638-18643 (2012). https://doi.org/10.1021/ja3060436
- S. B. Engelsma, L. I. Willems, C. E. van Paaschen, S. I. van Kasteren, G. A. van der Marel, H. S. Overkleeft, and D. V. Filippov, Acylazetine as a dienophile in bioorthogonal inverse electron-demand Diels-Alder ligation, Org. Lett., 16, 2744-2747 (2014). https://doi.org/10.1021/ol501049c
- S. Stairs, A. A. Neves, H. Stockmann, Y. A Wainman, H. Ireland-Zecchini, K. M. Brindle, and F. J. Leeper, Metabolic glycan imaging by isonitrile-tetrazine click chemistry, ChemBioChem, 14, 1063-1067 (2013). https://doi.org/10.1002/cbic.201300130
- H. S. Han, N. K. Devaraj, J. Lee, S. A. Hilderbrand, R. Weissleder, and M. G. Bawendi, Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition, J. Am. Chem. Soc., 132, 7838-7839 (2010). https://doi.org/10.1021/ja101677r
- S. M. Ametamey, M. Honer, and P. A. Schubiger, Molecular Imaging with PET, Chem. Rev., 108, 1501-1516 (2008). https://doi.org/10.1021/cr0782426
- O. K. Hjelstuen, A. Svadberg, D. E. Olberg, and M. Rosser, Standardization of fluorine-18 manufacturing processes: New scientific challenges for PET, Eur. J. Pharm. Biopharm., 78, 307-313 (2011). https://doi.org/10.1016/j.ejpb.2011.01.002
- M. Vrabel, P. Kolle, K. M. Brunner, M. J. Gattner, V. Lopez-Carrillo, R. de Vivie-Riedle, and T. Carell, Norbornenes in inverse electron-demand Diels-Alder reactions, Chem. Eur. J., 19, 13309-13312 (2013). https://doi.org/10.1002/chem.201301838
-
Z. Li, H. Cai, M. Hassink, M. L. Blackman, R. C. D. Brown, P. S. Conti, and J. M. Fox, Tetrazine-trans-cyclooctene ligation for the rapid construction of
$^{18}F$ labeled probes, Chem. Commun., 46, 8043-8045 (2010). https://doi.org/10.1039/c0cc03078c -
R. Selvaraj, S. Liu, M. Hassink, C.-W. Huang, L.-P. Yap, R. Park, J. M. Fox, Z. Li, and P. S. Conti, Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin
${\alpha}_v{\beta}_3$ targeted PET tracer based on a cyclic RGD peptide, Bioorg. Med. Chem. Lett., 21, 5011-5014 (2011). https://doi.org/10.1016/j.bmcl.2011.04.116 -
S. Liu, M. Hassink, R. Selvaraj, L. P. Yap, R. Park, H. Wang, X. Chen, J. M. Fox, Z. Li, and P. S. Conti, Efficient
$^{18}F$ labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation, Mol. Imaging, 12, 121-128 (2013). -
T. Reiner, E. J. Keliher, S. Earley, B. Marinelli, and R. Weissleder, Synthesis and In Vivo imaging of a
$^{18}F$ -labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method, Angew. Chem. Int. Ed., 50, 1922-1925 (2011). https://doi.org/10.1002/anie.201006579 -
Z. Wu, S. Liu, M. Hassink, I. Nair, R. Park, L. Li, I. Todorov, J. M. Fox, Z. Li, E. Shively, and P. S. Conti, Development and evaluation of
$^{18}F$ -TTCO-Cys40-Exendin-4: A PET probe for imaging transplanted islets. J. Nucl. Med., 54, 244-251 (2013). https://doi.org/10.2967/jnumed.112.109694 -
J. C. Knight, S. Richter, M. Wuest, J. D. Way, and F. Wuest, Synthesis and evaluation of an
$^{18}F$ -labelled norbornene derivative for copper-free click chemistry reactions, Org. Biomol. Chem., 11, 3817-3825 (2013). https://doi.org/10.1039/c3ob40548f -
C. Denk, D. Svatunek, T. Filip, T. Wanek, D. Lumpi, J. Frohlich, C. Kuntner, and H. Mikula, Development of a
$^{18}F$ -labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging, Angew. Chem. Int. Ed., 53, 9655-9659 (2014). https://doi.org/10.1002/anie.201404277 - N. K. Devaraj, G. M. Thurber, E. J. Keliher, B. Marinelli, and R. Weissleder, Reactive polymer enables efficient in vivo bioorthogonal chemistry, Proc. Natl. Acad. Sci. USA, 109, 4762-4767 (2012). https://doi.org/10.1073/pnas.1113466109
-
M. M. Herth, V. L. Andersen, S. Lehel, J. Madsen, G. M. Knudsen, and J. L. Kristensen, Development of a
$^{11}C$ -labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation, Chem. Commun., 49, 3805-3807 (2013). https://doi.org/10.1039/c3cc41027g - B. M. Zeglis, P. Mohindra, G. I. Weissmann, V. Divilov, S. A. Hilderbrand, R. Weissleder, and J. S. Lewis, Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry, Bioconjug. Chem., 22, 2048-2059 (2011). https://doi.org/10.1021/bc200288d
- B. M. Zeglis, K. K. Sevak, T. Reiner, P. Mohindra, S. D. Carlin, P. Zanzonico, R. Weissleder, and J. S. Lewis, A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry, J. Nucl. Med., 54, 1389-1396 (2013). https://doi.org/10.2967/jnumed.112.115840
-
H. L. Evans, Q.-D. Nguyen, L. S. Carroll, M. Kaliszczak, F. J. Twyman, A. C. Spivey, and E. O. Aboagye, A bioorthogonal
$^{68}Ga$ -labelling strategy for rapid in vivo imaging, Chem. Commun., 50, 9557-9560 (2014). https://doi.org/10.1039/C4CC03903C -
B. Nichols, Z. Qin, J. Yang, D. R. Vera, and N. K. Devaraj,
$^{68}Ga$ chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers, Chem. Commun., 50, 5215-5217 (2014). https://doi.org/10.1039/C3CC49530B - A. R. Genady, J. Tan, M. E. El-Zaria, A. Zlitni, N. Janzen, and J. F. Valliant, Reprint of: Synthesis, characterization and radiolabeling of carborane-functionalized tetrazines for use in inverse electron demand Diels-Alder ligation reactions, J. Organomet. Chem., 798, 278-288 (2015). https://doi.org/10.1016/j.jorganchem.2015.10.030
-
S. A. Albu, S. A. Al-Karmi, A. Vito, J. P. K. Dzandzi, A. Zlitni, D. Beckford-Vera, M. Blacker, N. Janzen, R. M. Patel, A. Capretta, and J. F. Valliant,
$^{125}I$ -Tetrazines and inverse-electron-demand Diels-Alder chemistry: A convenient radioiodination strategy for biomolecule labeling, screening, and biodistribution studies, Bioconjug. Chem., 27, 207-216 (2016). https://doi.org/10.1021/acs.bioconjchem.5b00609 -
M. H. Choi, H. E. Shim, S.-J. Yun, H. R. Kim, S. Mushtaq, C. H. Lee, S. H. Park, D. S. Choi, D. E. Lee, E.-B. Byun, B.-S. Jang, and J. Jeon, Highly efficient method for
$^{125}I$ -radiolabeling of biomolecules using inverse-electron-demand Diels-Alder reaction, Bioorg. Med. Chem., 24, 2589-2594 (2016). https://doi.org/10.1016/j.bmc.2016.04.029 - R. Rossin, P. R. Verkerk, S. M. van den Bosch, R. Vulders, I. Verel, J. Lub, and M. S. Robillard, In vivo vhemistry for pretargeted tumor imaging in live mice, Angew. Chem. Int. Ed., 49, 3375-3378 (2010). https://doi.org/10.1002/anie.200906294
- R. Rossin, S. M. J. van Duijnhoven, T. Lappchen, S. M. van den Bosch, and M. S. Robillard, Trans-cyclooctene tag with improved properties for tumor pretargeting with the Diels-Alder reaction, Mol. Pharm., 11, 3090-3096 (2014). https://doi.org/10.1021/mp500275a
-
A. Yazdani, H. Bilton, A. Vito, A. R. Genady, S. M. Rathmann, Z. Ahmad, N. Janzen, S. Czorny, B. M. Zeglis, L. C. Francesconi, and J. F. Valliant, A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: A proof of concept study using
$^{99m}Tc$ -and$^{177}Lu$ -labeled tetrazines, J. Med. Chem., 59, 9381-9389 (2016). https://doi.org/10.1021/acs.jmedchem.6b00938
피인용 문헌
- Synthesis of 125I-labeled tetrazine for efficient radiolabeling of human serum albumin vol.3, pp.2, 2017, https://doi.org/10.22643/jrmp.2017.3.2.98
- Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals vol.24, pp.19, 2017, https://doi.org/10.3390/molecules24193567