DOI QR코드

DOI QR Code

Synthesis of PET and SPECT Radiotracers Using Inverse Electron-demand Diels-Alder Reaction

Inverse Electron-demand Diels-Alder 반응을 이용한 핵의학 영상 프로브의 합성 및 활용

  • Mushtaq, Sajid (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jeon, Jongho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • ;
  • 전종호 (한국원자력연구원 첨단방사선연구소)
  • Received : 2017.03.07
  • Accepted : 2017.03.21
  • Published : 2017.04.10

Abstract

Inverse electron-demand Diels-Alder reactions (IEDDA) between tetrazine derivatives and strained dienophiles have attracted a lot of attention for the efficient conjugation of biomolecules, polymers, and nanomaterials. Excellent specificity, exceptionally fast reaction rate, and biocompatibility are key features of IEDDA. Therefore, it has also been applied to the development of new labeling methods using several radioisotopes and development of radiotracers to carry out various nuclear imaging as well as therapeutic studies. The purpose of this review is to introduce the reader to the recent advances and applications of IEDDA in the fields of radiochemistry and nuclear medicine.

1,2,4,5-테트라진 유도체를 이용한 inverse electron-demand Diels-Alder (IEDDA) 반응은 다양한 생체물질, 고분자, 나노 물질 복합체의 효율적인 합성에 폭넓게 활용되고 있다. IEDDA는 유기용매에서뿐만 아니라 생리학적 조건 하에서도 매우 특이적이며 빠른 반응속도를 가지고 있는 것으로 알려져 있다. 이러한 특성으로 인해 본 반응은 다양한 생물학적 활성을 가지는 물질의 방사성동위원소 표지와 분자영상 및 질병 치료를 위한 방사성의약품 개발에도 활발히 응용되고 있다. 본 리뷰 논문은 IEDDA 반응을 방사화학 및 핵의학 분야에서 이용한 최근 연구 동향 및 연구 결과 그리고 향후 전망에 대해 소개하고자 한다.

Keywords

References

  1. A. Knall and C. Slugovc, Inverse electron demand Diels-Alder (IEDDA)-initiated conjugation: A (high) potential click chemistry scheme, Chem. Soc. Rev., 42, 5131-5142 (2013). https://doi.org/10.1039/c3cs60049a
  2. N. K. Devaraj and R. Weissleder, Biomedical applications of tetrazine cycloadditions, Acc. Chem. Res., 44, 816-827 (2011). https://doi.org/10.1021/ar200037t
  3. J. Seckute and N. K Devaraj, Expanding room for tetrazine ligations in the in vivo chemistry toolbox, Curr. Opin. Chem. Biol., 17, 761-767 (2013). https://doi.org/10.1016/j.cbpa.2013.08.004
  4. M. L. Blackman, M. Royzen, and J. M. Fox, Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity, J. Am. Chem. Soc., 130, 13518-13519 (2008). https://doi.org/10.1021/ja8053805
  5. J. Schoch, M. Staudt, A. Samanta, M. Wiessler, and A. Jaschke, Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconjug. Chem., 23, 1382-1386 (2012). https://doi.org/10.1021/bc300181n
  6. N. K. Devaraj, R. Weissleder, and S. A. Hilderbrand, Tetrazinebased cycloadditions: Application to pretargeted live cell imaging, Bioconjug. Chem., 19, 2297-2299 (2008). https://doi.org/10.1021/bc8004446
  7. W. Chen, D. Wang, C. Dai, D. Hamelberg, and B. Wang, Clicking 1, 2, 4, 5-tetrazine and cyclooctynes with tunable reaction rates, Chem. Commun., 48, 1736-1738 (2012). https://doi.org/10.1039/C2CC16716F
  8. D. M. Patterson, L. A. Nazarova, B. Xie, D. N. Kamber, and J. A. Prescher, Functionalized cyclopropenes as bioorthogonal chemical reporters. J. Am. Chem. Soc., 134, 18638-18643 (2012). https://doi.org/10.1021/ja3060436
  9. S. B. Engelsma, L. I. Willems, C. E. van Paaschen, S. I. van Kasteren, G. A. van der Marel, H. S. Overkleeft, and D. V. Filippov, Acylazetine as a dienophile in bioorthogonal inverse electron-demand Diels-Alder ligation, Org. Lett., 16, 2744-2747 (2014). https://doi.org/10.1021/ol501049c
  10. S. Stairs, A. A. Neves, H. Stockmann, Y. A Wainman, H. Ireland-Zecchini, K. M. Brindle, and F. J. Leeper, Metabolic glycan imaging by isonitrile-tetrazine click chemistry, ChemBioChem, 14, 1063-1067 (2013). https://doi.org/10.1002/cbic.201300130
  11. H. S. Han, N. K. Devaraj, J. Lee, S. A. Hilderbrand, R. Weissleder, and M. G. Bawendi, Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition, J. Am. Chem. Soc., 132, 7838-7839 (2010). https://doi.org/10.1021/ja101677r
  12. S. M. Ametamey, M. Honer, and P. A. Schubiger, Molecular Imaging with PET, Chem. Rev., 108, 1501-1516 (2008). https://doi.org/10.1021/cr0782426
  13. O. K. Hjelstuen, A. Svadberg, D. E. Olberg, and M. Rosser, Standardization of fluorine-18 manufacturing processes: New scientific challenges for PET, Eur. J. Pharm. Biopharm., 78, 307-313 (2011). https://doi.org/10.1016/j.ejpb.2011.01.002
  14. M. Vrabel, P. Kolle, K. M. Brunner, M. J. Gattner, V. Lopez-Carrillo, R. de Vivie-Riedle, and T. Carell, Norbornenes in inverse electron-demand Diels-Alder reactions, Chem. Eur. J., 19, 13309-13312 (2013). https://doi.org/10.1002/chem.201301838
  15. Z. Li, H. Cai, M. Hassink, M. L. Blackman, R. C. D. Brown, P. S. Conti, and J. M. Fox, Tetrazine-trans-cyclooctene ligation for the rapid construction of $^{18}F$ labeled probes, Chem. Commun., 46, 8043-8045 (2010). https://doi.org/10.1039/c0cc03078c
  16. R. Selvaraj, S. Liu, M. Hassink, C.-W. Huang, L.-P. Yap, R. Park, J. M. Fox, Z. Li, and P. S. Conti, Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin ${\alpha}_v{\beta}_3$ targeted PET tracer based on a cyclic RGD peptide, Bioorg. Med. Chem. Lett., 21, 5011-5014 (2011). https://doi.org/10.1016/j.bmcl.2011.04.116
  17. S. Liu, M. Hassink, R. Selvaraj, L. P. Yap, R. Park, H. Wang, X. Chen, J. M. Fox, Z. Li, and P. S. Conti, Efficient $^{18}F$ labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation, Mol. Imaging, 12, 121-128 (2013).
  18. T. Reiner, E. J. Keliher, S. Earley, B. Marinelli, and R. Weissleder, Synthesis and In Vivo imaging of a $^{18}F$-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method, Angew. Chem. Int. Ed., 50, 1922-1925 (2011). https://doi.org/10.1002/anie.201006579
  19. Z. Wu, S. Liu, M. Hassink, I. Nair, R. Park, L. Li, I. Todorov, J. M. Fox, Z. Li, E. Shively, and P. S. Conti, Development and evaluation of $^{18}F$-TTCO-Cys40-Exendin-4: A PET probe for imaging transplanted islets. J. Nucl. Med., 54, 244-251 (2013). https://doi.org/10.2967/jnumed.112.109694
  20. J. C. Knight, S. Richter, M. Wuest, J. D. Way, and F. Wuest, Synthesis and evaluation of an $^{18}F$-labelled norbornene derivative for copper-free click chemistry reactions, Org. Biomol. Chem., 11, 3817-3825 (2013). https://doi.org/10.1039/c3ob40548f
  21. C. Denk, D. Svatunek, T. Filip, T. Wanek, D. Lumpi, J. Frohlich, C. Kuntner, and H. Mikula, Development of a $^{18}F$-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging, Angew. Chem. Int. Ed., 53, 9655-9659 (2014). https://doi.org/10.1002/anie.201404277
  22. N. K. Devaraj, G. M. Thurber, E. J. Keliher, B. Marinelli, and R. Weissleder, Reactive polymer enables efficient in vivo bioorthogonal chemistry, Proc. Natl. Acad. Sci. USA, 109, 4762-4767 (2012). https://doi.org/10.1073/pnas.1113466109
  23. M. M. Herth, V. L. Andersen, S. Lehel, J. Madsen, G. M. Knudsen, and J. L. Kristensen, Development of a $^{11}C$-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation, Chem. Commun., 49, 3805-3807 (2013). https://doi.org/10.1039/c3cc41027g
  24. B. M. Zeglis, P. Mohindra, G. I. Weissmann, V. Divilov, S. A. Hilderbrand, R. Weissleder, and J. S. Lewis, Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry, Bioconjug. Chem., 22, 2048-2059 (2011). https://doi.org/10.1021/bc200288d
  25. B. M. Zeglis, K. K. Sevak, T. Reiner, P. Mohindra, S. D. Carlin, P. Zanzonico, R. Weissleder, and J. S. Lewis, A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry, J. Nucl. Med., 54, 1389-1396 (2013). https://doi.org/10.2967/jnumed.112.115840
  26. H. L. Evans, Q.-D. Nguyen, L. S. Carroll, M. Kaliszczak, F. J. Twyman, A. C. Spivey, and E. O. Aboagye, A bioorthogonal $^{68}Ga$-labelling strategy for rapid in vivo imaging, Chem. Commun., 50, 9557-9560 (2014). https://doi.org/10.1039/C4CC03903C
  27. B. Nichols, Z. Qin, J. Yang, D. R. Vera, and N. K. Devaraj, $^{68}Ga$ chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers, Chem. Commun., 50, 5215-5217 (2014). https://doi.org/10.1039/C3CC49530B
  28. A. R. Genady, J. Tan, M. E. El-Zaria, A. Zlitni, N. Janzen, and J. F. Valliant, Reprint of: Synthesis, characterization and radiolabeling of carborane-functionalized tetrazines for use in inverse electron demand Diels-Alder ligation reactions, J. Organomet. Chem., 798, 278-288 (2015). https://doi.org/10.1016/j.jorganchem.2015.10.030
  29. S. A. Albu, S. A. Al-Karmi, A. Vito, J. P. K. Dzandzi, A. Zlitni, D. Beckford-Vera, M. Blacker, N. Janzen, R. M. Patel, A. Capretta, and J. F. Valliant, $^{125}I$-Tetrazines and inverse-electron-demand Diels-Alder chemistry: A convenient radioiodination strategy for biomolecule labeling, screening, and biodistribution studies, Bioconjug. Chem., 27, 207-216 (2016). https://doi.org/10.1021/acs.bioconjchem.5b00609
  30. M. H. Choi, H. E. Shim, S.-J. Yun, H. R. Kim, S. Mushtaq, C. H. Lee, S. H. Park, D. S. Choi, D. E. Lee, E.-B. Byun, B.-S. Jang, and J. Jeon, Highly efficient method for $^{125}I$-radiolabeling of biomolecules using inverse-electron-demand Diels-Alder reaction, Bioorg. Med. Chem., 24, 2589-2594 (2016). https://doi.org/10.1016/j.bmc.2016.04.029
  31. R. Rossin, P. R. Verkerk, S. M. van den Bosch, R. Vulders, I. Verel, J. Lub, and M. S. Robillard, In vivo vhemistry for pretargeted tumor imaging in live mice, Angew. Chem. Int. Ed., 49, 3375-3378 (2010). https://doi.org/10.1002/anie.200906294
  32. R. Rossin, S. M. J. van Duijnhoven, T. Lappchen, S. M. van den Bosch, and M. S. Robillard, Trans-cyclooctene tag with improved properties for tumor pretargeting with the Diels-Alder reaction, Mol. Pharm., 11, 3090-3096 (2014). https://doi.org/10.1021/mp500275a
  33. A. Yazdani, H. Bilton, A. Vito, A. R. Genady, S. M. Rathmann, Z. Ahmad, N. Janzen, S. Czorny, B. M. Zeglis, L. C. Francesconi, and J. F. Valliant, A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: A proof of concept study using $^{99m}Tc$-and $^{177}Lu$-labeled tetrazines, J. Med. Chem., 59, 9381-9389 (2016). https://doi.org/10.1021/acs.jmedchem.6b00938

Cited by

  1. Synthesis of 125I-labeled tetrazine for efficient radiolabeling of human serum albumin vol.3, pp.2, 2017, https://doi.org/10.22643/jrmp.2017.3.2.98
  2. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals vol.24, pp.19, 2017, https://doi.org/10.3390/molecules24193567