DOI QR코드

DOI QR Code

Terpenes from Forests and Human Health

  • Cho, Kyoung Sang (Department of Biological Sciences, Konkuk University) ;
  • Lim, Young-ran (Department of Biological Sciences, Konkuk University) ;
  • Lee, Kyungho (Department of Biological Sciences, Konkuk University) ;
  • Lee, Jaeseok (Department of Biological Sciences, Konkuk University) ;
  • Lee, Jang Ho (Department of Biological Sciences, Konkuk University) ;
  • Lee, Im-Soon (Department of Biological Sciences, Konkuk University)
  • 투고 : 2017.02.06
  • 심사 : 2017.02.16
  • 발행 : 2017.04.15

초록

Forest bathing has beneficial effects on human health via showering of forest aerosols as well as physical relaxation. Terpenes that consist of multiple isoprene units are the largest class of organic compounds produced by various plants, and one of the major components of forest aerosols. Traditionally, terpene-containing plant oil has been used to treat various diseases without knowing the exact functions or the mechanisms of action of the individual bioactive compounds. This review categorizes various terpenes easily obtained from forests according to their anti-inflammatory, anti-tumorigenic, or neuroprotective activities. Moreover, potential action mechanisms of the individual terpenes and their effects on such processes, which are described in various in vivo and in vitro systems, are discussed. In conclusion, the studies that show the biological effectiveness of terpenes support the benefits of forest bathing and propose a potential use of terpenes as chemotherapeutic agents for treating various human diseases.

키워드

참고문헌

  1. Frumkin, H. (2001) Beyond toxicity: human health and the natural environment. Am. J. Prev. Med., 20, 234-240. https://doi.org/10.1016/S0749-3797(00)00317-2
  2. Tsunetsugu, Y., Park, B.J. and Miyazaki, Y. (2010) Trends in research related to "Shinrin-yoku" (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med., 15, 27-37. https://doi.org/10.1007/s12199-009-0091-z
  3. Seo, S.C., Park, S.J., Park, C.W., Yoon, W.S., Choung, J.T. and Yoo, Y. (2015) Clinical and immunological effects of a forest trip in children with asthma and atopic dermatitis. Iran J. Allergy Asthma Immunol., 14, 28-36.
  4. Douglass, R.W. (1982) Forest recreation (3rd edition), Pergamon Press.
  5. Spievogel, I. and Spalek, K. (2012) Medicinal plants uesed in pediatric prophylactic method of Sebastian Kneipp. Nat. J., 45, 9-18.
  6. Joos, S., Rosemann, T., Szecsenyi, J., Hahn, E.G., Willich, S.N. and Brinkhaus, B. (2006) Use of complementary and alternative medicine in Germany: a survey of patients with inflammatory bowel disease. BMC Complement. Altern. Med., 6, 19. https://doi.org/10.1186/1472-6882-6-19
  7. Park, B.J., Tsunetsugu, Y., Kasetani, T., Kagawa, T. and Miyazaki, Y. (2010) The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med., 15, 18-26. https://doi.org/10.1007/s12199-009-0086-9
  8. Song, C., Ikei, H. and Miyazaki, Y. (2016) Physiological effects of nature therapy: A review of the research in Japan. Int. J. Environ. Res. Public Health, 13, E781. https://doi.org/10.3390/ijerph13080781
  9. Gershenzon, J. and Dudareva, N. (2007) The function of terpene natural products in the natural world. Nat. Chem. Biol., 3, 408-414. https://doi.org/10.1038/nchembio.2007.5
  10. Chappell, J. (2002) The genetics and molecular genetics of terpene and sterol origami. Curr. Opin. Plant Biol., 5, 151-157. https://doi.org/10.1016/S1369-5266(02)00241-8
  11. Mewalal, R., Rai, D.K., Kainer, D., Chen, F., Külheim, C., Peter, G.F. and Tuskan, G.A. (2016) Plant-derived terpenes: A feedstock for specialty biofuels. Trends Biotechnol., S0167-7799(16)30128-7.
  12. Kirby, J. and Keasling, J.D. (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol., 60, 335-355. https://doi.org/10.1146/annurev.arplant.043008.091955
  13. Zulak, K.G. and Bohlmann, J. (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol., 52, 86-97. https://doi.org/10.1111/j.1744-7909.2010.00910.x
  14. Lange, B.M. and Ahkami, A. (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes: current status and future opportunities. Plant Biotechnol. J., 11, 169-196. https://doi.org/10.1111/pbi.12022
  15. Dubey, V.S., Bhalla, R. and Luthra, R. (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosci., 28, 637-646. https://doi.org/10.1007/BF02703339
  16. Matsuba, Y., Nguyen, T.T., Wiegert, K., Falara, V., Gonzales- Vigil, E., Leong, B., Schäfer, P., Kudrna, D., Wing, R.A., Bolger, A.M., Usadel, B., Tissier, A., Fernie, A.R., Barry, C.S. and Pichersky, E. (2013) Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell, 25, 2022-2036. https://doi.org/10.1105/tpc.113.111013
  17. Martin, D.M., Gershenzon, J. and Bohlmann, J. (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol., 132, 1586-1599. https://doi.org/10.1104/pp.103.021196
  18. Lee, D.H., Kim, M.H., Park, O.H., Park, KS., An, S.S., Seo, H.J., Jin, S.H., Jeong, W.S., Kang, Y.J., An, K.W. and Kim, E.S. (2013) A study on the distribution characteristics of terpene at the main trails of Mt. Mudeung. J. Environ. Health Sci., 39, 211-222.
  19. Rufino, A.T., Ribeiro, M., Judas, F., Salgueiro, L., Lopes, M.C., Cavaleiro, C. and Mendes, A.F. (2014) Anti-inflammatory and chondroprotective activity of (+)-${\alpha}$-pinene: structural and enantiomeric selectivity. J. Nat. Prod., 77, 264-269. https://doi.org/10.1021/np400828x
  20. Ma, J., Xu, H., Wu, J., Qu, C., Sun, F. and Xu, S. (2015) Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-${\kappa}B$ activation. Int. Immunopharmacol., 29, 708-713. https://doi.org/10.1016/j.intimp.2015.09.005
  21. Rodrigues, K.A., Amorim, L.V., Dias, C.N., Moraes, D.F.C., Carneiro, S.M. and Carvalho, F.A. (2015) Syzygium cumini (L.) Skeels essential oil and its major constituent ${\alpha}$-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol., 160, 32-40. https://doi.org/10.1016/j.jep.2014.11.024
  22. Li, X.J., Yang, Y.J., Li, Y.S., Zhang, W.K. and Tang, H.B. (2016) ${\alpha}$-Pinene, linalool and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J. Ethnopharmacol., 179, 22-26. https://doi.org/10.1016/j.jep.2015.12.039
  23. Yu, P.J., Wan, L.M., Wan, S.H., Chen, W.Y., Xie, H., Meng, D.M., Zhang, J.J. and Xiao, X.L. (2016) Standardized myrtol attenuates lipopolysaccharide induced acute lung injury in mice. Pharm. Biol., 54, 3211-3216. https://doi.org/10.1080/13880209.2016.1216132
  24. Kim, D.S., Lee, H.J., Jeon, Y.D., Han, Y.H., Kee, J.Y., Kim, H.J., Shin, H.J., Kang, J., Lee, B.S., Kim, S.H., Kim, S.J., Park, S.H., Choi, B.M., Park, S.J., Um, J.Y. and Hong, S.H. (2015) Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-${\kappa}B$ pathway in mouse peritoneal macrophages. Am. J. Chin. Med., 43, 731-742. https://doi.org/10.1142/S0192415X15500457
  25. Nam, S.Y., Chung, C.k., Seo, J.H., Rah, S.Y., Kim, H.M. and Jeong, H.J. (2014) The therapeutic efficacy of ${\alpha}$-pinene in an experimental mouse model of allergic rhinitis. Int. Immunopharmacol., 23, 273-282. https://doi.org/10.1016/j.intimp.2014.09.010
  26. Hansen, J.S., Norgaard, A.W., Koponen, I.K., Sorli, J.B., Paidi, M.D., Hansen, S.W., Clausen, P.A., Nielsen, G.D., Wolkoff, P. and Larsen, S.T. (2016) Limonene and its ozoneinitiated reaction products attenuate allergic lung inflammation in mice. J. Immunotoxicol., 13, 793-803. https://doi.org/10.1080/1547691X.2016.1195462
  27. Amorim, J.L., Simas, D.L.R., Pinheiro, M.M., Moreno, D.S., Alviano, C.S., da Silva, A.J. and Fernandes, P.D. (2016) Antiinflammatory properties and chemical characterization of the essential oils of four citrus species. PLoS ONE, 11, e0153643. https://doi.org/10.1371/journal.pone.0153643
  28. Rufino, A.T., Ribeiro, M., Sousa, C., Judas, F., Salgueiro, L., Cavaleiro, C. and Mendes, A.F. (2015) Evaluation of the antiinflammatory, anti-catabolic and pro-anabolic effects of Ecaryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol., 750, 141-150. https://doi.org/10.1016/j.ejphar.2015.01.018
  29. Rehman, M.U., Tahir, M., Khan, A.Q., Khan, R., Oday-OHamiza, Lateef, A., Hassan, S.K., Rashid, S., Ali, N., Zeeshan, M. and Sultana, S. (2014) D-limonene suppresses doxorubicin- induced oxidative stress and inflammation via repression of COX-2, iNOS and NF${\kappa}B$ in kidneys of Wistar rats. Exp. Biol. Med. (Maywood), 239, 465-476. https://doi.org/10.1177/1535370213520112
  30. Games, E., Guerreiro, M., Santana, F.R., Pinheiro, N.M., de Oliveira, E.A., Lopes, F.D., Olivo, C.R., Tibério, I.F., Martins, M.A., Lago, J.H. and Prado, C.M. (2016) Structurally related monoterpenes p-Cymene, carvacrol and thymol isolated from essential oil from leaves of lippia sidoides cham. (Verbenaceae) protect mice against elastase-induced emphysema. Molecules, 21, E1390. https://doi.org/10.3390/molecules21101390
  31. Chen, L., Zhao, L., Zhang, C. and Lan, Z. (2014) Protective effect of p-cymene on lipopolysaccharide-induced acute lung injury in mice. Inflammation, 37, 358-364. https://doi.org/10.1007/s10753-013-9747-3
  32. Xie, G., Chen, N., Soromou, L.W., Liu, F., Xiong, Y., Wu, Q., Li, H., Feng, H. and Liu, G. (2012) p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules, 17, 8159-8173. https://doi.org/10.3390/molecules17078159
  33. Zhong, W., Chi, G., Jiang, L., Soromou, L.W., Chen, N., Huo, M., Guo, W., Deng, X. and Feng, H. (2013) p-Cymene modulates in vitro and in vivo cytokine production by inhibiting MAPK and NF-${\kappa}B$ activation. Inflammation, 36, 529-537. https://doi.org/10.1007/s10753-012-9574-y
  34. Huo, M., Cui, X., Xue, J., Chi, G., Gao, R., Deng, X., Guan, S., Wei, J., Soromou, L.W., Feng, H. and Wang, D. (2013) Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res., 180, e47-e54. https://doi.org/10.1016/j.jss.2012.10.050
  35. Li, Y., Lv, O., Zhou, F., Li, Q., Wu, Z. and Zheng, Y. (2015) Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem. Res., 40, 1520-1525. https://doi.org/10.1007/s11064-015-1629-7
  36. de Oliveira Ramalho, T.R., de Oliveira, M.T., de Araujo Lima, A.L., Bezerra-Santos, C.R. and Piuvezam, M.R. (2015) Gamma-terpinene modulates acute inflammatory response in mice. Planta Med., 81, 1248-1254. https://doi.org/10.1055/s-0035-1546169
  37. Hua, K.F., Yang, T.J., Chiu, H.W. and Ho, C.L. (2014) Essential oil from leaves of Liquidambar formosana ameliorates inflammatory response in lipopolysaccharide-activated mouse macrophages. Nat. Prod. Commun., 9, 869-872.
  38. Kim, K.N., Ko, Y.J., Yang, H.M., Ham, Y.M., Roh, S.W., Jeon, Y.J., Ahn, G., Kang, M.C., Yoon, W.J., Kim, D. and Oda, T. (2013) Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-${\kappa}B$ signaling pathways in LPS-activated RAW 264.7 cells. Food Chem. Toxicol., 57, 126-131. https://doi.org/10.1016/j.fct.2013.03.017
  39. Kim, M.J., Yang, K.W., Kim, S.S., Park, S.M., Park, K.J., Kim, K.S., Choi, Y.H., Cho, K.K. and Hyun, C.G. (2014) Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat. Prod. Commun., 9, 727-730.
  40. Zhong, W., Cui, Y., Yu, Q., Xie, X., Liu, Y., Wei, M., Ci, X. and Peng, L. (2014) Modulation of LPS-stimulated pulmonary inflammation by borneol in murine acute lung injury model. Inflammation, 37, 1148-1157. https://doi.org/10.1007/s10753-014-9839-8
  41. Jiang, J., Shen, Y.Y., Li, J., Lin, Y.H., Luo, C.X. and Zhu, D.Y. (2015) (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Eur. J. Pharmacol., 757, 53-58. https://doi.org/10.1016/j.ejphar.2015.03.056
  42. Almeida, J.R., Souza, G.R., Silva, J.C., Saraiva, S.R., Junior, R.G., Quintans Jde, S., Barreto Rde, S., Bonjardim, L.R., Cavalcanti, S.C. and Quintans, L.J., Jr. (2013) Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice. ScientificWorldJournal, 2013, 808460
  43. Sherkheli, M.A., Schreiner, B., Haq, R., Werner, M. and Hatt, H. (2015) Borneol inhibits TRPA1, a proinflammatory and noxious pain-sensing cation channel. Pak. J. Pharm. Sci., 28, 1357-1363.
  44. Ojha, S., Javed, H., Azimullah, S. and Haque, M.E. (2016) ${\beta}$-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem., 418, 59-70. https://doi.org/10.1007/s11010-016-2733-y
  45. Varga, Z.V., Matyas, C., Erdelyi, K., Cinar, R., Nieri, D., Chicca, A., Nemeth, B.T., Paloczi, J., Lajtos, T., Corey, L., Hasko, G., Gao, B., Kunos, G., Gertsch, J. and Pacher, P. (2017) Beta-caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. Br. J. Pharmacol. [Epub ahead of print].
  46. Basha, R.H. and Sankaranarayanan, C. (2016) ${\beta}$-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem. Biol. Interact., 245, 50-58. https://doi.org/10.1016/j.cbi.2015.12.019
  47. Cho, H.I., Hong, J.M., Choi, J.W., Choi, H.S., Kwak, J.H., Lee, D.U., Lee, S.K. and Lee, S.M. (2015) ${\beta}$-Caryophyllene alleviates d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. Eur. J. Pharmacol., 764, 613-621. https://doi.org/10.1016/j.ejphar.2015.08.001
  48. Kim, M.J., Yang, K.W., Kim, S.S., Park, S.M., Park, K.J., Kim, K.S., Choi, Y.H., Cho, K.K., Lee, N.H. and Hyun, C.G. (2013) Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower. EXCLI J., 12, 933-942.
  49. Chaiyana, W., Anuchapreeda, S., Leelapornpisid, P., Phongpradist, R., Viernstein, H. and Mueller, M. (2016) Development of microemulsion delivery system of essential oil from Zingiber cassumunar Roxb. Rhizome for improvement of stability and anti-inflammatory activity. AAPS PharmSciTech, 1-11.
  50. Yang, H., Zhao, R., Chen, H., Jia, P., Bao, L. and Tang, H. (2014) Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11. IUBMB Life, 66, 854-859. https://doi.org/10.1002/iub.1338
  51. Sobral, M.V., Xavier, A.L., Lima, T.C. and de Sousa, D.P. (2014) Antitumor activity of monoterpenes found in essential oils. ScientificWorldJournal, 2014, 953451.
  52. Broitman, S.A., Wilkinson, J., 4th, Cerda, S. and Branch, S.K. (1996) Effects of monoterpenes and mevinolin on murine colon tumor CT-26 in vitro and its hepatic "Metastases" in vitro. Adv. Exp. Med. Biol., 401, 111-130.
  53. Uedo, N., Tatsuta, M., Iishi, H., Baba, M., Sakai, N., Yano, H. and Otani, T. (1999) Inhibition by d-limonene of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Cancer Lett., 137, 131-136. https://doi.org/10.1016/S0304-3835(98)00340-1
  54. Stratton, S., Dorr, R. and Alberts, D. (2000) The state-of-theart in chemoprevention of skin cancer. Eur. J. Cancer, 36, 1292-1297. https://doi.org/10.1016/S0959-8049(00)00108-8
  55. Kaji, I., Tatsuta, M., Iishi, H., Baba, M., Inoue, A. and Kasugai, H. (2001) Inhibition by D-limonene of experimental hepatocarcinogenesis in Sprague-Dawley rats does not involve p21ras plasma membrane association. Int. J. Cancer, 93, 441-444. https://doi.org/10.1002/ijc.1353
  56. Guyton, K.Z. and Kensler, T.W. (2002) Prevention of liver cancer. Curr. Oncol. Rep., 4, 464-470. https://doi.org/10.1007/s11912-002-0057-4
  57. Lu, X.G., Zhan, L.B., Feng, B.A., Qu, M.Y., Yu, L.H. and Xie, J.H. (2004) Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J. Gastroenterol., 10, 2140-2144. https://doi.org/10.3748/wjg.v10.i14.2140
  58. Ji, J., Zhang, L., Wu, Y.Y., Zhu, X.Y., Lv, S.Q. and Sun, X.Z. (2006) Induction of apoptosis by d-limonene is mediated by a caspase-dependent mitochondrial death pathway in human leukemia cells. Leuk. Lymphoma, 47, 2617-2624. https://doi.org/10.1080/00268970600909205
  59. Jia, S.S., Xi, G.P., Zhang, M., Chen, Y.B., Lei, B., Dong, X.S. and Yang, Y.M. (2013) Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep., 29, 349-354. https://doi.org/10.3892/or.2012.2093
  60. Li, Q. (2010) Effect of forest bathing trips on human immune function. Environ. Health Prev. Med., 15, 9-17. https://doi.org/10.1007/s12199-008-0068-3
  61. Bansal, A., Moriarity, D.M., Takaku, S. and Setzer, W.N. (2007) Chemical composition and cytotoxic activity of the leaf essential oil of Ocotea tonduzii from Monteverde, Costa Rica. Nat. Prod. Commun., 2, 781-784.
  62. Matsuo, A.L., Figueiredo, C.R., Arruda, D.C., Pereira, F.V., Scutti, J.A., Massaoka, M.H., Travassos, L.R., Sartorelli, P. and Lago, J.H. (2011) ${\alpha}$-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun., 411, 449-454. https://doi.org/10.1016/j.bbrc.2011.06.176
  63. Chen, W., Liu, Y., Li, M., Mao, J., Zhang, L., Huang, R., Jin, X. and Ye, L. (2015) Anti-tumor effect of ${\alpha}$-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci., 127, 332-338. https://doi.org/10.1016/j.jphs.2015.01.008
  64. Jin, K.S., Bak, M.J., Jun, M., Lim, H.J., Jo, W.K. and Jeong, W.S. (2010) ${\alpha}$-Pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. Food Sci. Biotechnol., 19, 1325-1332. https://doi.org/10.1007/s10068-010-0189-5
  65. Kusuhara, M., Urakami, K., Masuda, Y., Zangiacomi, V., Ishii, H., Tai, S., Maruyama, K. and Yamaguchi, K. (2012) Fragrant environment with ${\alpha}$-pinene decreases tumor growth in mice. Biomed. Res., 33, 57-61. https://doi.org/10.2220/biomedres.33.57
  66. Bakarnga-Via, I., Hzounda, J.B., Fokou, P.V.T., Tchokouaha, L.R.Y., Gary-Bobo, M., Gallud, A., Garcia, M., Walbadet, L., Secka, Y., Dongmo, P.M.J., Boyom, F.F. and Menut, C. (2014) Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth. and Monodora myristica (Gaertn) growing in chad and cameroon. BMC Complement. Altern. Med., 14, 125. https://doi.org/10.1186/1472-6882-14-125
  67. Li, Y.L., Yeung, C.M., Chiu, L., Cen, Y.Z. and Ooi, V.E. (2009) Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Schefflera heptaphylla. Phytother. Res., 23, 140-142. https://doi.org/10.1002/ptr.2567
  68. Meadows, S.M., Mulkerin, D., Berlin, J., Bailey, H., Kolesar, J., Warren, D. and Thomas, J.P. (2002) Phase II trial of perillyl alcohol in patients with metastatic colorectal cancer. Int. J. Gastrointest. Cancer, 32, 125-128. https://doi.org/10.1385/IJGC:32:2-3:125
  69. Chen, T.C., Cho, H.Y., Wang, W., Wetzel, S.J., Singh, A., Nguyen, J., Hofman, F.M. and Schönthal, A.H. (2015) Chemotherapeutic effect of a novel temozolomide analog on nasopharyngeal carcinoma in vitro and in vivo. J. Biomed. Sci., 22, 71. https://doi.org/10.1186/s12929-015-0175-6
  70. Bardon, S., Foussard, V., Fournel, S. and Loubat, A. (2002) Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression. Cancer Lett., 181, 187-194. https://doi.org/10.1016/S0304-3835(02)00047-2
  71. Yeruva, L., Pierre, K.J., Elegbede, A., Wang, R.C. and Carper, S.W. (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett., 257, 216-226. https://doi.org/10.1016/j.canlet.2007.07.020
  72. Ferraz, R.P., Bomfim, D.S., Carvalho, N.C., Soares, M.B., da Silva, T.B., Machado, W.J., Prata, A.P.N., Costa, E.V., Moraes, V.R.S., Nogueira, P.C.L. and Bezerra, D.P. (2013) Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine, 20, 615-621. https://doi.org/10.1016/j.phymed.2013.01.015
  73. Li, J., Liu, C. and Sato, T. (2016) Novel antitumor invasive actions of p-Cymene by decreasing MMP-9/TIMP-1 expression ratio in human fibrosarcoma HT-1080 cells. Biol. Pharm. Bull., 39, 1247-1253. https://doi.org/10.1248/bpb.b15-00827
  74. Saleh, M., Hashem, F. and Glombitza, K. (1998) Cytotoxicity and in vitro effects on human cancer cell lines of volatiles of Apium graveolens var filicinum. Pharm. Pharmacol. Lett., 8, 97-99.
  75. Silva, S.L.d., Figueiredo, P.M. and Yano, T. (2007) Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amaz., 37, 281-286. https://doi.org/10.1590/S0044-59672007000200015
  76. Maggi, F., Fortuné Randriana, R., Rasoanaivo, P., Nicoletti, M., Quassinti, L., Bramucci, M., Lupidi, G., Petrelli, D., Vitali, L.A., Papa, F. and Vittori, S. (2013) Chemical composition and in vitro biological activities of the essential oil of Vepris macrophylla (Baker) I. Verd. endemic to Madagascar. Chem. Biodivers., 10, 356-366. https://doi.org/10.1002/cbdv.201200253
  77. Kuo, Y.H., Kuo, Y.J., Yu, A.S., Wu, M.D., Ong, C.W., Kuo, L.M.Y., Huang, J.T., Chen, C.F. and Li, S.Y. (2003) Two novel sesquiterpene lactones, cytotoxic vernolide-A and-B, from Vernonia cinerea. Chem. Pharm. Bull., 51, 425-426. https://doi.org/10.1248/cpb.51.425
  78. Dahham, S.S., Tabana, Y.M., Iqbal, M.A., Ahamed, M.B., Ezzat, M.O., Majid, A.S. and Majid, A.M. (2015) The anticancer, antioxidant and antimicrobial properties of the sesquiterpene ${\beta}$-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 20, 11808-11829. https://doi.org/10.3390/molecules200711808
  79. Jung, J.I., Kim, E.J., Kwon, G.T., Jung, Y.J., Park, T., Kim, Y., Yu, R., Choi, M.S., Chun, H.S., Kwon, S.H., Her, S., Lee, K.W. and Park, J.H. (2015) ${\beta}$-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice. Carcinogenesis, 36, 1028-1039. https://doi.org/10.1093/carcin/bgv076
  80. Sarvmeili, N., Jafarian-Dehkordi, A. and Zolfaghari, B. (2016) Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines. Res. Pharm. Sci., 11, 476-483. https://doi.org/10.4103/1735-5362.194887
  81. Legault, J. and Pichette, A. (2007) Potentiating effect of ${\beta}$- caryophyllene on anticancer activity of ${\alpha}$-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol., 59, 1643-1647. https://doi.org/10.1211/jpp.59.12.0005
  82. Lesgards, J.F., Baldovini, N., Vidal, N. and Pietri, S. (2014) Anticancer activities of essential oils constituents and synergy with conventional therapies: a review. Phytother. Res., 28, 1423-1446. https://doi.org/10.1002/ptr.5165
  83. Savelev, S.U., Okello, E.J. and Perry, E.K. (2004) Butyryl-and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother. Res., 18, 315-324. https://doi.org/10.1002/ptr.1451
  84. Liu, Z.B., Niu, W.M., Yang, X.H., Yuan, W. and Wang, W.G. (2010) Study on perfume stimulating olfaction with volatile oil of Acorus gramineus for treatment of the Alzheimer's disease rat. J. Tradit. Chin. Med., 30, 283-287. https://doi.org/10.1016/S0254-6272(10)60057-X
  85. Majlessi, N., Choopani, S., Kamalinejad, M. and Azizi, Z. (2012) Amelioration of amyloid ${\beta}$-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer's disease. CNS Neurosci. Ther., 18, 295-301. https://doi.org/10.1111/j.1755-5949.2011.00237.x
  86. Cioanca, O., Hritcu, L., Mihasan, M., Trifan, A. and Hancianu, M. (2014) Inhalation of coriander volatile oil increased anxiolytic- antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer's disease. Physiol. Behav., 131, 68-74. https://doi.org/10.1016/j.physbeh.2014.04.021
  87. Oboh, G., Olasehinde, T.A. and Ademosun, A.O. (2014) Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation. J. Oleo Sci., 63, 373-381. https://doi.org/10.5650/jos.ess13166
  88. Abuhamdah, S., Abuhamdah, R., Howes, M.J., Al-Olimat, S., Ennaceur, A. and Chazot, P.L. (2015) Pharmacological and neuroprotective profile of an essential oil derived from leaves of Aloysia citrodora Palau. J. Pharm. Pharmacol., 67, 1306- 1315. https://doi.org/10.1111/jphp.12424
  89. Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Khan, M.A., Ahmad, W., Shah, M.R., Imran, M. and Ahmad, S. (2015) Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: A Preliminary anti-Alzheimer's study. Lipids Health Dis., 14, 141. https://doi.org/10.1186/s12944-015-0145-8
  90. Klein-Junior, L.C., dos Santos Passos, C., Tasso de Souza, T.J., Gobbi de Bitencourt, F., Salton, J., de Loreto Bordignon, S.A. and Henriques, A.T. (2016) The monoamine oxidase inhibitory activity of essential oils obtained from Eryngium species and their chemical composition. Pharm. Biol., 54, 1071-1076. https://doi.org/10.3109/13880209.2015.1102949
  91. Muhlbauer, R., Lozano, A., Palacio, S., Reinli, A. and Felix, R. (2003) Common herbs, essential oils and monoterpenes potently modulate bone metabolism. Bone, 32, 372-380. https://doi.org/10.1016/S8756-3282(03)00027-9
  92. Koo, B.S., Lee, S.I., Ha, J.H. and Lee, D.U. (2004) Inhibitory effects of the essential oil from SuHeXiang Wan on the central nervous system after inhalation. Biol. Pharm. Bull., 27, 515-519. https://doi.org/10.1248/bpb.27.515
  93. Lima, B., Lopez, S., Luna, L., Aguero, M.B., Aragon, L., Tapia, A., Zacchino, S., Lopez, M.L., Zygadlo, J. and Feresin, G.E. (2011) Essential oils of medicinal plants from the central andes of Argentina: chemical composition, and antifungal, antibacterial, and insect-repellent activities. Chem. Biodivers., 8, 924-936. https://doi.org/10.1002/cbdv.201000230
  94. El-Seedi, H.R., Khalil, N.S., Azeem, M., Taher, E.A., Göransson, U., Pålsson, K. and Borg-Karlson, A.K. (2012) Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae). J. Med. Entomol., 49, 1067-1075. https://doi.org/10.1603/ME11250
  95. Mkaddem, M., Bouajila, J., Ennajar, M., Lebrihi, A., Mathieu, F. and Romdhane, M. (2009) Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci., 74, M358-M363. https://doi.org/10.1111/j.1750-3841.2009.01272.x
  96. Hong, Y.K., Park, S.H., Lee, S., Hwang, S., Lee, M.J., Kim, D., Lee, J.H., Han, S.Y., Kim, S.T., Kim, Y.K., Jeon, S., Koo, B.S. and Cho, K.S. (2011) Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer's disease. J. Ethnopharmacol., 134, 1028-1032. https://doi.org/10.1016/j.jep.2011.02.012
  97. Park, S.H., Lee, S., Hong, Y.K., Hwang, S., Lee, J.H., Bang, S.M., Kim, Y.K., Koo, B.S., Lee, I.S. and Cho, K.S. (2013) Suppressive effects of SuHeXiang Wan on amyloid-${\beta}42$- induced extracellular signal-regulated kinase hyperactivation and glial cell proliferation in a transgenic Drosophila model of Alzheimer's disease. Biol. Pharm. Bull., 36, 390-398. https://doi.org/10.1248/bpb.b12-00792
  98. Liu, Q.F., Jeong, H., Lee, J.H., Hong, Y.K., Oh, Y., Kim, Y.M., Suh, Y.S., Bang, S., Yun, H.S., Lee, K., Cho, S.M., Lee, S.B., Jeon, S. Chin, Y.W., Koo, B.S. and Cho, K.S. (2016) Coriandrum sativum suppresses $A{\beta}42$-induced ROS increases, glial cell proliferation and ERK activation. Am. J. Chin. Med., 44, 1325-1347. https://doi.org/10.1142/S0192415X16500749
  99. Liu, Q.F., Lee, J.H., Kim, Y.M., Lee, S., Hong, Y.K., Hwang, S., Oh, Y., Lee, K., Yun, H.S., Lee, I.S., Jeon, S., Chin, Y.W., Koo, B.S. and Cho, K.S. (2015) In vivo screening of traditional medicinal plants for neuroprotective activity against $A{\beta}42$ cytotoxicity by using Drosophila models of Alzheimer's disease. Biol. Pharm. Bull., 38, 1891-1901. https://doi.org/10.1248/bpb.b15-00459
  100. Hur, J., Pak, S.C., Koo, B.S. and Jeon, S. (2013) Borneol alleviates oxidative stress via upregulation of Nrf2 and Bcl-2 in SH-SY5Y cells. Pharm. Biol., 51, 30-35. https://doi.org/10.3109/13880209.2012.700718
  101. Tian, L.L., Zhou, Z., Zhang, Q., Sun, Y.N., Li, C.R., Cheng, C., Zhong, Z.Y. and Wang, S.Q. (2007) Protective effect of (${\pm}$) isoborneol against 6-OHDA-induced apoptosis in SHSY5Y cells. Cell. Physiol. Biochem., 20, 1019-1032. https://doi.org/10.1159/000110682
  102. Han, M., Liu, Y., Zhang, B., Qiao, J., Lu, W., Zhu, Y., Wang, Y. and Zhao, C. (2011) Salvianic borneol ester reduces ${\beta}$-amyloid oligomers and prevents cytotoxicity. Pharm. Biol., 49, 1008-1013. https://doi.org/10.3109/13880209.2011.559585
  103. Calleja, M.A., Vieites, J.M., Montero-Meterdez, T., Torres, M.I., Faus, M.J., Gil, A. and Suarez, A. (2013) The antioxidant effect of ${\beta}$-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Br. J. Nutr., 109, 394-401. https://doi.org/10.1017/S0007114512001298
  104. Sharma, C., Al Kaabi, J.M., Nurulain, S.M., Goyal, S.N., Kamal, M.A. and Ojha, S. (2016) Polypharmacological properties and therapeutic potential of ${\beta}$-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des., 22, 3237-3264. https://doi.org/10.2174/1381612822666160311115226
  105. Cheng, Y., Dong, Z. and Liu, S. (2014) ${\beta}$-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 mice through CB2 receptor activation and the $PPAR{\gamma}$ pathway. Pharmacology, 94, 1-12. https://doi.org/10.1159/000362689
  106. Porres-Martinez, M., Gonzalez-Burgos, E., Carretero, M.E. and Gomez-Serranillos, M.P. (2016) In vitro neuroprotective potential of the monoterpenes ${\alpha}$-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Z. Naturforsch., C, J. Biosci., 71, 191-199.
  107. Sammi, S.R., Trivedi, S., Rath, S.K., Nagar, A., Tandon, S., Kalra, A. and Pandey, R. (2016) 1-Methyl-4-propan-2-ylbenzene from Thymus vulgaris Attenuates Cholinergic Dysfunction. Mol. Neurobiol. [Epub ahead of print].
  108. Lee, Y. (2016) Cytotoxicity evaluation of essential oil and its component from zingiber officinale roscoe. Toxicol. Res., 32, 225-230. https://doi.org/10.5487/TR.2016.32.3.225
  109. Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008) Biological effects of essential oils-a review. Food Chem. Toxicol., 46, 446-475. https://doi.org/10.1016/j.fct.2007.09.106

피인용 문헌

  1. Is All Urban Green Space the Same? A Comparison of the Health Benefits of Trees and Grass in New York City vol.14, pp.11, 2017, https://doi.org/10.3390/ijerph14111411
  2. and Its Components vol.33, pp.4, 2017, https://doi.org/10.5487/TR.2017.33.4.283
  3. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.4195
  4. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01109
  5. Future expectations of forest soils: increasing productivity within environmental limits using new knowledge vol.61, pp.3, 2018, https://doi.org/10.1080/00288233.2018.1446992
  6. Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082248
  7. Guest–host interactions and complex formation for artemisinin with cyclodextrins: instrumental analysis and evaluation of biological activity pp.1588-2926, 2018, https://doi.org/10.1007/s10973-018-7411-8
  8. Fruit-Derived Polysaccharides and Terpenoids: Recent Update on the Gastroprotective Effects and Mechanisms vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00569
  9. Illnesses and Injuries at Nature Preschools pp.1552-390X, 2018, https://doi.org/10.1177/0013916518773469
  10. Essential oils of Citrus aurantifolia, Anthemis nobile and Lavandula officinalis: in vitro anthelmintic activities against Haemonchus contortus vol.11, pp.1, 2018, https://doi.org/10.1186/s13071-018-2849-x