DOI QR코드

DOI QR Code

몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가

A Monte Carlo Study of Dose Enhancement according to the Enhancement Agents

  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 황철환 (부산대학교병원 방사선종양학과)
  • Kim, Jung-Hoon (Departments of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Chang-Soo (Departments of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Hwang, Chulhwan (Departments of Radiation Oncology, Pusan National University Hospital)
  • 투고 : 2017.02.15
  • 심사 : 2017.03.15
  • 발행 : 2017.03.31

초록

Monte Carlo 시뮬레이션을 이용하여 MV X, ${\gamma}$선에서의 선량증가 효과를 평가하였다. MCNPX code를 이용하여 ICRU 평판형(Slab) 모의피폭체를 전산모사하였으며, 입사 광자의 에너지, 선량증가 물질의 종류 및 농도에 따른 영향을 분석하였다. 선량증가 물질은 금(aurum), 가돌리늄(gadolinium), 요오드(iodine), 산화철(iron oxide)에 대해 비교 평가하였으며, 입사에너지는 선형가속기에서 발생된 4, 6, 10, 15 MV X선의 스펙트럼과 Co 60의 ${\gamma}$선원을 사용하였다. 모의피폭체 내에 7, 18, 30 mg/g 농도의 물질을 삽입하였으며, 선량증가 효과의 정량적 평가를 위해 선량증가비를 산출하였다. X선의 입사에너지가 낮을수록, 선량증가 물질의 농도가 높을수록 높은 선량증가비를 나타내었으며, 최대 선량증가비는 금 1.079, 가돌리늄 1.062, 요오드 1.049, 산화철 1.035를 보여 금, 가돌리늄, 요오드, 산화철 입자 순으로 높은 선량증가 효과를 보였다. 이러한 결과는 In-vivo, vitro 연구의 기초자료로 활용할 수 있을 것으로 사료된다.

Dose enhancement effects at megavoltage (MV) X and ${\gamma}-ray$ energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide ($Fe_2O_3$) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co-60 ${\gamma}-ray$ were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

키워드

참고문헌

  1. Berbeco R, Korideck H, Ngwa W et al. In vitro dose enhancement from gold nanoparticles under different clinical MV photon beam configurations. Med Phys 39(6), 3900, 2012
  2. Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B 72, 128-134, 2009 https://doi.org/10.1016/j.colsurfb.2009.03.025
  3. Butterworth KT, Wyer JA, Brennan-Fournet M et al. Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1, 45-66, 2008 https://doi.org/10.2147/NSA.S3707
  4. Faiz M. Khan, The physics of radiation therapy, Fourth edition, Wolters Kluwer Lippincott Williams & Wilkins
  5. James F. Hainfeld, F. AvraHam Dilmanian, Daniel N. Slatkin, Henry M. smilowitz: Radiotherapy enhancement with gold nanoparticels. Journal of pharmacy and parmacology 60, 977-985, 2008
  6. John and Lyman, Complication probability as assessment from dose-volume histograms, Radiation Research, 104, 13-19, 1985 https://doi.org/10.2307/3576626
  7. Perez-Lopez CE, Garnica-Garza HM. Monte Carlo modeling and optimization of contrast-enhanced radiotherapy of brain tumors. Phys Med Biol. 56, 4059-72, 2011 https://doi.org/10.1088/0031-9155/56/13/020
  8. Chithrani DB, Jelveh F, Jalali F et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res, 173, 719-728, 2010 https://doi.org/10.1667/RR1984.1
  9. Duc G, Miladi I, Alric C, et al, Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticle, ACS nano, 5, 9566-74, 2011 https://doi.org/10.1021/nn202797h
  10. Ghorbani M., Bakhshabdi M., Dose enhancement by various nanoparticles in prostate brachythreapy, Australas Phy Eng Sci Med, 36, 431-440, 2013 https://doi.org/10.1007/s13246-013-0231-z
  11. Zhang SX, Gao J, Buchholz TA et al. Quantifying tumor-selective radiation dose enhancements using GNPs: a Monte Carlo simulation study. Biomed Microdevices 11,(4), 925-933, 2009. https://doi.org/10.1007/s10544-009-9309-5
  12. Bahreyni Toossi MT, Ghorbani M, Mehrpouyan M et al. A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles. Australas Phys Eng Sci Med, 35, 177-185, 2012 https://doi.org/10.1007/s13246-012-0143-3
  13. Khoei S1, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A., The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol, 90(5), 351-356, 2014 https://doi.org/10.3109/09553002.2014.888104
  14. Corot C, Warlin D, Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 5, 411-22, 2013 https://doi.org/10.1002/wnan.1225
  15. Kang SK, Ahn SH, Kim CY, A study on photon dose calculation in 6 MV Linear Accelerator Based on Monte Carlo Method, Journal of Radiological Science and Technology, 34(1), 43-50, 2011
  16. ICRU. Stopping Powers for Electrons and Positrons. Bethesda, MD: International Commission on Radiation Units and Measurements; 1984. International Commission on Radiation Units and Measurements. ICRU Report 37
  17. Baumgartner A., Steurer A. and Maringer F.. Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: Simplified estimates with PENELOPE Monte Carlo models, Applied Radiation and Isotopes, 67, 2007-12, 2009 https://doi.org/10.1016/j.apradiso.2009.07.010
  18. Asghar M, Michael F, Mahmoud A, et al, Monte Carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements, Applied Radiation and Isotopes, 62, 467-77, 2005
  19. Pelowitz D. B.. MCNPX user's manual 2.7.0. LANL Report LA-CP-11-00438, Los Alamos National Laboratory, 2011
  20. Mesbahi A, Jamali F, Gharehaghaji, N et al, Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy BioImpacts, 3, 29-35, 2013
  21. Delaram Pakravan, Mahdi Ghorbani, Mehdi Momennezhad, Tumor dose enhancement by gold nanoparticles in a 6 MV photon beam: a Monte Carlo study on the size effect of nanoparticles, NUKLEONIKA 58, 275-280, 2013
  22. Mohammad Taghi Bahreyni Toossi, Mahdi Ghorbani, Leila Sobhkhiz Sabet, Fateme Akbari, Mohammad Mehrpouyan, A Monte Carlo study on dose enhancement and photon contamination production by various nanoparticles in electron mode of a medical linac NUKLEONIKA, 60, 489-496, 2015 https://doi.org/10.1515/nuka-2015-0087
  23. Ramesh N. and Sharma S., Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique, Journal of Cancer Research and Therapeutics, 11, 94-97, 2011
  24. Butterworth KT, Mcmacho SJ, Taggart LE, Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress, Transl Cancer Res, 2, 269-79, 2013
  25. Faiz M. Khan, The physics of radiation therapy, Fourth edition, Wolters Kluwer Lippincott Williams & Wilkins
  26. ChulHwan Hwang, Se-Sik Kang, Jung-Hoon Kim, A Monte Carlo Study of Secondary Electron Production from Gold Nanoparticle in Kilovoltage and Megavoltage Energies. J. korean soc. radiol., 10, 153-159, 2015
  27. McMahon S., Mendenhal M. and Jain S., Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticle, Phys Med Biol, 53, 5635-51, 2008 https://doi.org/10.1088/0031-9155/53/20/005
  28. Daniel G, Vladmir F. Eduardo G. Kujtim L, Geoffrey G, Monte Carlo study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy, PLOSONE, 9, 1-7, 2014
  29. Huang FK, Chen WC, Lai SF, et al. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol, 55, 469-482, 2010 https://doi.org/10.1088/0031-9155/55/2/009