DOI QR코드

DOI QR Code

비이온 폴리올을 이용한 Garment 코팅용 수분산 폴리우레탄의 합성 및 물성에 관한 연구

A Study on the Synthesis and Properties of Water-Dispersion Polyurethane for Garment Coating Using Nonionic Polyol

  • 이주엽 (중원대학교 이공대학 신재생에너지자원학과)
  • Lee, Joo-Youb (Department of Renewable Energy Engineering, Jungwon University)
  • 투고 : 2017.02.16
  • 심사 : 2017.03.27
  • 발행 : 2017.03.30

초록

Garment skin leather 표면 코팅에 사용된 폴리우레탄 수지는 polyethylene glycole(PEG)의 함유를 [NCO]/[OH] mole % 비로 달리하면서 합성하였으며, 합성된 폴리우레탄 수지의 기계적 특성은 SEM, FT-IR, UTM 등을 이용하여 측정하였다. 비이온성을 띄고 있는 PEG(poly ethylene glycol)의 [NCO]/[OH] mole % 비가 증가함에 따라 내굴곡성(건식, 습식)의 변화는 없었으며, 내마모도, 인장강도수치가 낮아짐을 알 수 있었다. 반대로 연신율 물성은 증가함을 알 수 있었다. 점도 변화 측정 결과에는 PEG의 [NCO]/[OH] mole % 증가에 따라 점도가 묽어짐을 알 수 있었다.

The polyurethane resin used for the garment skin leather surface coating was synthesized by varying the content of polyethylene glycol (PEG) in [NCO] / [OH] mole % ratio. The mechanical properties of the synthesized polyurethane resin were analyzed by SEM, FT-IR, UTM. As the [NCO] / [OH] mole % ratio of nonionic poly ethylene glycol (PEG) increased, there was no change in flexural resistance (dry, wet) and abrasion resistance and tensile strength measurement value were lowered. In contrast, the elongation property values were increased. The result of viscosity measurement showed that the viscosity became thinner with increasing [NCO] / [OH] mole % of PEG.

키워드

참고문헌

  1. L. Wang, Y. Zhu, J. Qu, Preparation and assistant-film-forming performance of aqueous polyurethane dispersions, Progress in Organic Coatings, Vol 105 pp 9-17, (2017). https://doi.org/10.1016/j.porgcoat.2016.12.005
  2. S. k.. Gaddam, A. Palanisamy, Anionic waterborne polyurethane-imide dispersions from cottonseed oil based ionic polyol, Ind Crops Prod, Vol 96 pp 132-139, (2017). https://doi.org/10.1016/j.indcrop.2016.11.054
  3. X. Zhou, C. Fang, Q. Yu, R. Yang, L. Xie, Y. Cheng, Y. Li, Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment, Int J Adhes Adhes, Vol 74 pp 49-56, (2017). https://doi.org/10.1016/j.ijadhadh.2016.12.010
  4. P. J. Peruzzo, P. S. Anbinder, F. M. Pardini, O. R. Pardini, T. S. Plivelic, J. I. Amalvy, On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties, Materials Today Communications, Vol 6 pp 81-91, (2016). https://doi.org/10.1016/j.mtcomm.2016.01.002
  5. A. S.-Echart, I. Fernandes, A. S.aralegi, M. Rui, P.F.N. Costa, F. Barreiro, M. A. Corcuera, A. Eceiza, Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media, J Colloid Interface Sci, Vol 476 pp 184-192, (2016). https://doi.org/10.1016/j.jcis.2016.05.016
  6. S. Saalah, L. C. Abdullah, M. M. Aung, M. Z. Salleh, D. R. A. Biak, M. Basri, E. R. Jusoh, Waterborne polyurethane dispersions synthesized from jatropha oil, Ind Crops Prod, Vol 64 pp 194-200, (2015). https://doi.org/10.1016/j.indcrop.2014.10.046
  7. S. Muzaffar, I. A. Bhatti, M. Zuber, H. N. Bhatti, M. Shahid, Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan, Int J Biol Macromol, Vol 94 pp 51-60, (2017). https://doi.org/10.1016/j.ijbiomac.2016.09.106
  8. V. Garcia-Pacios, J. A. Jofre-Reche, V. Costa, M. Colera, J. M. Martin-Martinez, Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights, Progress in Organic Coatings, Vol 76 pp 1484-1493, (2013). https://doi.org/10.1016/j.porgcoat.2013.06.005
  9. S. M. Cakic, I. S. Ristic, M. M. Cincovic, N. C. Nikolic, L.a B. Nikolic, M. J. Cvetinov, Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly (caprolactone) diol, Progress in Organic Coatings, Vol 105 pp 111-122, (2017). https://doi.org/10.1016/j.porgcoat.2016.10.038
  10. S, Sundar, N, Vijayalakshmi, S, Gupta, R. Rajaram, G, Radhakrishnan, Aqueous dispersions of polyurethane-polyvinyl pyridine cationomers and their application as binder in base coat for leather finishing, Progress in Organic Coatings, Vol 56 pp 178-184, (2006). https://doi.org/10.1016/j.porgcoat.2006.04.001
  11. J. Hu, W. Deng, Application of supercritical carbon dioxide for leather processing, J Clean Prod, Vol 113 pp 931-946, (2016). https://doi.org/10.1016/j.jclepro.2015.10.104
  12. H. Murakami, R. Baba, M. Fukushima, N. Nonaka, Synthesis and characterization of polyurethanes crosslinked by polyrotaxanes consisting of half-methylated cyclodextrins and PEGs with different chain lengths, Polymer, Vol 56 pp 368-374, (2015). https://doi.org/10.1016/j.polymer.2014.11.057
  13. T. Gurunathan, C. R. K. Rao, R. Narayan, K.V.S.N. Raju, Synthesis, characterization and corrosion evaluation on new cationomeric polyurethane water dispersions and their polyaniline composites, Progress in Organic Coatings, Vol 76 pp 639-647, (2013). https://doi.org/10.1016/j.porgcoat.2012.12.009
  14. M. B. Karimi, G. Khanbabaei, G. M. M. Sadeghi, Vegetable oil-based polyurethane membrane for gas separation, J Memb Sci, Vol 527 pp 198-206, (2017). https://doi.org/10.1016/j.memsci.2016.12.008
  15. T. C. Wen, Y. J. Wang, T. T. Cheng, C. H. Yang, The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes. Polymer, Vol 40 pp 3979- 3988, (1999). https://doi.org/10.1016/S0032-3861(98)00625-9