DOI QR코드

DOI QR Code

Enhanced Acidification Efficiency of Sewage Sludge by Seaweed Addition

해조류 첨가를 통한 하수슬러지 산발효 효율 증대

  • 신상룡 (인하대학교 사회인프라공학과) ;
  • 이모권 (인하대학교 사회인프라공학과) ;
  • 김민균 (인하대학교 사회인프라공학과) ;
  • 홍성민 (아쿠아테크) ;
  • 김동훈 (인하대학교 사회인프라공학과)
  • Received : 2016.12.28
  • Accepted : 2017.01.13
  • Published : 2017.03.30

Abstract

In the present work, the synergistic effect of seaweed addition on organic acid production from sludge was investigated. The batch experiment was conducted at various mixing ratios of sewage sludge and seaweed (100:0, 75:25, 50:50, 25:75, 0:100 on a COD basis) under the substrate concentration of 20 g COD/L. The fermentation temperature was conducted under mesophilic condition ($35^{\circ}C$) and a heat-treated ($90^{\circ}C$ for 20 min) anaerobic digester sludge was used as a seeding source to suppress the methanogenic activity, The results showed that the amount of organic acid production increased as the content of seaweed increased: organic acids were 1.45, 3.22, 4.28, 5.24 and 4.82 g COD/L for the mixing ratio of 100:0, 75:25, 50:50, 25:75 and 0:100 respectively. The synergistic effect was calculated based on the organic acid production of individual sludge and seaweed, and was found to be 0.92, 1.14, 1.26 g COD/L at the mixing ratio of 75:25, 50:50 and 25:75, which indicates that 40% of synergy was obtained when 25% of seaweed was added. The synergistic effect could be ascribed to the high C/N ratio and biodegradability of seaweed.

본 연구에서는 하수슬러지의 유기산 생산에 있어 해조류 첨가를 통한 상승효과를 확인하고자 새로운 접근을 시도하였다. 기질농도를 동일하게 20 g COD/L로 하고 하수슬러지와 해조류의 혼합비율을 COD 기준, 100:0, 75:25, 50:50, 25:75, 0:100으로 조절하여 실험하였다. 실험 온도는 $35^{\circ}C$, 중온에서 이루어졌고 메탄 생산균의 활성을 억제하기 위해서 $90^{\circ}C$, 20분간 열처리된 혐기성소화슬러지를 식종균으로 이용하였다. 실험결과를 살펴보면, 해조류의 첨가량이 증가할수록 유기산의 농도도 증가하는 경향을 나타내었으며 혼합비율별 100:0, 75:25, 50:50, 25:75, 0:100 (하수슬러지:해조류) 유기산 생산량은 각각 1.45, 3.22, 4.28, 5.24, 4.82 g COD/L이었다. 하수슬러지와 해조류만의 유기산 생산량을 기반으로 하여 상승효과를 계산한 결과, 혼합비율 75:25, 50:50, 25:75 에서 각각 0.92, 1.14, 1.26 g COD/L로 나타났다. 이는 해조류가 25% 비율로 첨가 시 전체 생산된 유기산의 40%가 상승효과에 의해 생산되었음을 의미하며, 해조류의 상대적인 높은 C/N비와 생분해도에 기인한다.

Keywords

References

  1. [김용준, 박진규, 為田一雄, 이남훈, "공기주입과 영가철을 이용한 하수슬러지 가용화 연구", 유기물자원화] Kim, Y. J., Park, J. K., Tameda. K., and Lee, N. H., "Assessment of sludge solubilization by aeration and zero-valent ion as a pre-treatment for anaerobic digestion", Journal of the Korea Organic Resources Recycling Association, 24(3), pp. 53-61. (2016). https://doi.org/10.17137/KORRAE.2016.24.3.53
  2. Cho, H.U., Park, S.K., Ha, J.M., and Park, J.M., "An Innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal alkaline treatment and sludge recirculation", J. Environ. Manage, 129, pp. 274-282. (2013). https://doi.org/10.1016/j.jenvman.2013.07.009
  3. [이모권, 김동훈, 임소영, 김미선, "가용화와 생분해에 따른 하수슬러지의 성분 분류", 유기성자원학회 춘계학술대회] Lee, M. K., Kim, D. H., Lim, S. Y., and Kim, M. S., "Division of waste activated sludge components by four parts depending on its solubility and biodegradability", Korea Organic Resources Recycling Association Spring Conference, pp. 184-188. (2012).
  4. Dhar, B. R., Nakhla, G., and Ray, M. B., "Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municlpal waste activated sludge", Waste Management, 32, pp. 542-549. (2012). https://doi.org/10.1016/j.wasman.2011.10.007
  5. [신항식, 김현우, 한선기, 강석태, "하수슬러지와 음식물쓰레기의 혼합소화시 혼합비율과 기질농도에 따른 분해 특성", 유기물자원화] Shin, H. S., Kim, H. W., Han, S. K., and Kang, S. T., "Degradation characteristics in anaerobic co-digestion of sewage sludge and food waste", Journal of the Korea Organic Resources Recycling Association, 10(1), pp. 96-101. (2002).
  6. Aichinger, P., Wadhawan, T., Kuprian, M., Higgins, M., Ebner, C., Fimml, C., murthy, S., and Wett, B., "Synergistic co-digestion of solid-organic-waste and municipal sewage sludge : 1 plus 1 equals more than 2 in terms of biogas production and solids reduction", Water Research, 87, pp. 416-423. (2015). https://doi.org/10.1016/j.watres.2015.07.033
  7. Zhang, W., Wei, Q., Wu, S., Qi, D., Li, W., and Dong, R., "Batch anerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions", Applied Energy, 128, pp. 175-183. (2014). https://doi.org/10.1016/j.apenergy.2014.04.071
  8. Zhang, J., Lv, C., Tong, J., Liu, J., Liu, J., Yu, D., Wang, Y., Chen, M., and Wei, Y., "Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment", Bioresource Technology, 200, pp. 253-261. (2016). https://doi.org/10.1016/j.biortech.2015.10.037
  9. Kim, M., Yang, Y., Morikawa-Sakura, M. S., Wang, Q., Lee, M. V., Lee, D. Y., Feng, C., Zhou, Y., and Zhang, Z., "Hydrogen production by anaerobic co-digestion of rice straw and sewage sludge", International Journal of Hydrogen Energy, 37, pp. 3142-3149. (2012). https://doi.org/10.1016/j.ijhydene.2011.10.116
  10. [김정민, 이영호, 정성훈, 이진태, 조무환, "해조류의 혐기성 발효를 이용한 메탄생산", Clean Technology] Kim, J. M., Lee, Y. H., Jung, S. H., Lee, J. T., and Cho, M. H., "Production of methane from anaerobic fermentation of marine macro-algae", Clean Technology, 16, pp. 51-58. (2010).
  11. Costa, J. C., Goncalves, P. R., Nobre, A., and Alves, M. M., "Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge", Bioresource Technology, 114, pp. 320-326. (2012). https://doi.org/10.1016/j.biortech.2012.03.011
  12. [백병천, 정은경, "2차 하수슬러지의 혐기성 산발효에 대한 마이크로파 전처리의 영향 연구", 한국도시환경학회지] Baik, B. C. and Jung, E. K., "Effects of microwave pre-treatment on anaerobic fermentation efficiency of secondary activated sludge", Jounal of Korean Society of Urban Environment, 6, pp. 55-63. (2006).
  13. Liu, H., Xiao, H., Yin, B., Zu, Y., Liu, H., Fua, B., and Ma, H., "Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge", Chemical Engineering Journal, 284, pp. 194-201. (2016). https://doi.org/10.1016/j.cej.2015.08.121
  14. Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., and Gu, G., "Improved Bioproduction of Short-Chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions", Environ. Sci. Technol, 40, pp. 2025-2029, (2006). https://doi.org/10.1021/es052252b
  15. Pham, T. N., Nam, W. J., Jeon, Y. J., and Yoon, H. H., "Volatile fatty acids production from marine macroalgae by anaerobic fermentation", Bioresource Technology, 124, pp. 500-503. (2012). https://doi.org/10.1016/j.biortech.2012.08.081
  16. Huang, J., Zhou, R., Chen, J., Han, W., Chen, Y., Wen, Y., and Tang, J., "Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass", Bioresource Technology, 211, pp. 80-86. (2016). https://doi.org/10.1016/j.biortech.2016.03.071
  17. Yang, X., Du, M., Lee, D. J., Wan, C., Zheng, L, Li, G., and Chang, J. S., "Enhanced production of volatile fatty acids (VFAs) from sewage sludge by b-cyclodextrin", Bioresource Technology, 110, pp. 688-691. (2012). https://doi.org/10.1016/j.biortech.2011.08.122

Cited by

  1. 해조류 첨가를 통한 음식물쓰레기의 혐기성소화 효율 증대 vol.25, pp.3, 2017, https://doi.org/10.17137/korrae.2017.25.3.55