DOI QR코드

DOI QR Code

A Study on Web-based Technology Valuation System

웹기반 지능형 기술가치평가 시스템에 관한 연구

  • Sung, Tae-Eung (Technology Commercialization Analysis Center, Korea Institute of Science and Technology Information) ;
  • Jun, Seung-Pyo (Technology Commercialization Analysis Center, Korea Institute of Science and Technology Information) ;
  • Kim, Sang-Gook (Technology Commercialization Analysis Center, Korea Institute of Science and Technology Information) ;
  • Park, Hyun-Woo (Technology Commercialization Analysis Center, Korea Institute of Science and Technology Information)
  • 성태응 (한국과학기술정보연구원 사업기획분석실) ;
  • 전승표 (한국과학기술정보연구원 기술사업화분석센터) ;
  • 김상국 (한국과학기술정보연구원 산업정보분석실) ;
  • 박현우 (한국과학기술정보연구원 사업기획분석실)
  • Received : 2017.03.06
  • Accepted : 2017.03.13
  • Published : 2017.03.31

Abstract

Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

2000년대 이전부터 북미 유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산 활용되고 있다. 본 고에서는 KISTI에서 개발 운영중인 웹기반 'STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계 활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원 모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부 로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Baek, D. H., S. H. Yoo, H. S. Jeong, W. S. Sul, "Development of Technology Valuation System for Promoting Technology Transfer", Proceedings of Korea Intelligent Information System Society (Fall 2003), 277-286.
  2. Crowsey, M. J., A. R. Ramstad, D. H. Gutierrex, G. W. Paladino and K. P.Jr. White, "An Evaluation of Unstructured Text Mining Software", Systems and Information Engineering Design Symposium, IEEE(2007), 1-6.
  3. Heo, E. N., "Recent developments on economic valuation method: CVA MAUA and real option pricing", Journal of Korea Technology Innovation Society, Vol.3(2000), 37-54.
  4. Hong, G.. P., H. Kim, W. Sul and D. H. Baek, "Technology Valuation Model for Effective R&D Investment Decision-making", KISTI Research paper, 2002.
  5. Jun, S.-P. "An Study of Demand Forecasting Methodology Based on Hype Cycle: The Case Study on Hybrid Cars", Journal of Korea Technology Innovation Society, Vol.14, No.1(2011), 1232-1255.
  6. Jun, S.-P, H.-W. Park, J.-Y. Yoo, " The Development of the Method of Determining Remaining Cited-patent Life Time Using the Survival Curve Analysis", Journal of Korea Technology Innovation Society, Vol.15, No.4(2012), 745-765.
  7. Jun, S.-P., T.-E. Sung and H.-W. Park, "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Vol.115(2016), 37-51.
  8. Kang, N. G., S. H. Lee and H. M. Yoon, "A Study on Methodology of Establishing Meta Data about Technology Valuation Information", Proceedings of Korea Contents Conference (Fall 2007), 327-330.
  9. Kang, P.-S, Y.-J. Keum, H.-W. Park, S.-G. Kim, T.-E. Sung and H.-Y. Lee, "A Market-Based Replacement Cost Approach to Technology Valuation", Journal of Korea Institute of Industrial Engineers, Vol.41, No.2(2015), 150-161. https://doi.org/10.7232/JKIIE.2015.41.2.150
  10. Kim, S.-G., H.-W. Park and T.-E. Sung, "Remodulation Studies on Technology Valuation Models through Elaboration of Profit Volatility Analysis Models", Proceedings of Korea Technology Innovation Conference (2013), 151-162.
  11. Kim, S.-G., S.-P. Jun and H.-W. Park, "Influence Factors Analysis of Technology Evaluation in Agriculture and Food Industry and Simulation-based Comparison", Journal of Research on Technology Innovation, Vol.24, No.4(2016), 277-307.
  12. Kwon, Y., T.-K. Ryu and J. B. Park, "Assessment of online patent rating system in Korea", Proceedings of International Conference on Software Technology, Vol.19(2013), 164-167.
  13. Lim, S.-M., S.-G. Kim and H.-W. Park, "A Study on a Conceptual Model for Technology Valuation Based on Market Approach", Journal of Korea Technology Innovation Society, Vol.18, No.1(2015), 204-231.
  14. Park, H.-W., "Determinants and Influential Factors in Technology Valuation in Korea", International Journal of Contents, Vol.6 (2010), 53-58.
  15. Park, H.-W., S.-P. Jun and S.-G. Kim, "Comparative Studies on Application Methodologies of Income Approach in Technology Valuation", Proceedings of Korea Technology Innovation Conference (Spring 2012), 129-144.
  16. Park, H.-W. and J.-T. Lee, "Framework for Technology Valuation of Early Stage Technologies", Journal of Korea Technology Innovation Society, Vol.15, No.2(2012), 242-261.
  17. Reilly, R. F. and R. P. Schweihs, Valuing Intangible Assets, McGraw-Hill, New York, 1998.
  18. Reinhard, H., M. Kloyer and M. Lange, "Patent indicators for the technology life cycle development," Research Policy, Vol.36, No.3(2007), 387-398. https://doi.org/10.1016/j.respol.2006.12.004
  19. Seol, S. S., E. N. Heo and S. K. Kim, "Theories and Practices of Technology Valuation", Journal of Korea Technology Innovation Society, Vol.3, No.1(2000), 1-4.
  20. Shin, K. S., "Development of Company Credit Assessment System by Intelligent Information Technology", Proceedings of Korea Intelligent Information System Society (Spring 2000), 67-74.
  21. Smith, G. V. and R. L. Parr, Valuation of Intellectual Property and Intangible Assets, 3rd edition, John Wiley & Sons, New York, 2000.
  22. Sung, T.-E., S.-G. Kim, S.-P. Jun and H.-W. Park, "Web-based STAR-Value System for Technology Valuation", Proceedings of International Association of Management of Technology (2016), 319-337.
  23. Sung, T.-E., D.-S. Kim, J.-M. Jang and H.-W. Park, "An Empirical Analysis on Determinant Factors of Patent Valuation and Technology Transaction Prices", Journal of Korea Technology Innovation Society, Vol.19, No.2(2016), 254-279.
  24. Tseng, Y.-H., C.-J. Lin and Y.-I. Lin,"Text mining techniques for patent analysis", Information Processing and Management, Vol.43(2007), 1216-1247. https://doi.org/10.1016/j.ipm.2006.11.011
  25. Yang, D. W., "Valuation for technology on the practical viewpoint", Journal of Korea Technology Innovation Society, Vol.3(2000), 68-84.
  26. Yang, T. S and K. S. Min, "A Study on the Improvement of the Existing Technology Valuation Solutions;focused on high technology based start-up company", Journal of Research on Venture Start-up, Vol.2, No.2(2000), 93-120.
  27. Yoon, M. H., "Technology Valuation System of Owned Technologies", Journal of Science and Technology Policy, Vol.11, No.2(2001), 35-43.
  28. http://www.boer.org/services.shtml/, "Technology Valuation Service by Tiger Scientific Inc.", 2016.
  29. http://ip.com/solutions/innovationq/, 2016.
  30. http://www.oceantomo.com/, "OceanTomo Ratings System Data Access and Report Pricing", 2016.
  31. http://www.starvalue.or.kr/ 2016.

Cited by

  1. The adequacy of volatility for the elaboration of technology valuation based on real options pp.1465-3990, 2019, https://doi.org/10.1080/09537325.2018.1476683
  2. Elaboration of Real Options Model and the Adequacy of Volatility vol.6, pp.2, 2017, https://doi.org/10.7545/ajip.2017.6.2.225
  3. 기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구 vol.24, pp.3, 2017, https://doi.org/10.13088/jiis.2018.24.3.067
  4. 수자원 분야 공익형 기술가치평가 시스템에 대한 연구 vol.24, pp.3, 2018, https://doi.org/10.13088/jiis.2018.24.3.177