DOI QR코드

DOI QR Code

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode

희생양극을 이용한 태양광 리본의 부식 저감

  • Oh, Wonwook (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Chan, Sung-Il (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute)
  • 오원욱 (전자부품연구원 융복합전자소재연구센터) ;
  • 천성일 (전자부품연구원 융복합전자소재연구센터)
  • Received : 2016.11.21
  • Accepted : 2017.03.10
  • Published : 2017.03.31

Abstract

Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

태양광 모듈에서 태양전지를 연결해주는 인터커넥터로 리본 솔더로 SnPbAg가 사용되고, 옥외 태양광 발전에 장기간 노출시 리본의 부식으로 인한 열화가 흔히 관찰된다. 이러한 부식현상으로 인하여 리본과 태양전지의 접합이 약해져 접촉저항이 증가하고, 또한 리본 자체의 직렬 저항이 증가하게 되어 태양전지의 전압 전류 곡선에서 충진률 손실로 출력이 저하된다. 본 논문에서는 리본의 부식을 완화시킬 수 있는 방법으로 희생양극법을 이용하여 순수 알루미늄 및 아연, 알루미늄, 아연 그리고 마그네슘의 합금을 이용한 5가지 희생양극 소재의 부식에 의한 열화 저감을 연구하였다. 전기화학적 방법으로 희생양극 소재의 개방회로 전위와 폐쇄회로 전위를 측정하였고, 포텐시오다이나믹 분극 곡선을 측정하고, 영저항전류계를 이용하여 리본과 소재간의 갈바닉 전류를 측정하였다. 또한, 아세트산과, NaCl에 리본과 희생양극 소재의 부착 전후의 침지시험과 4셀 미니모듈로 제작한 후 1500시간 고온고습 시험 전후 출력을 평가하였다. 그 결과 Al-3Mg와 Al-3Zn-1Mg의 희생양극 소재가 부식속도가 느리고, 출력저하를 저감시킬 뿐만 아니라 장기 안정성에도 효과적인 것으로 평가된다.

Keywords

References

  1. L. C. Tsao, "Corrosion Resistance of Pb-Free and Novel Nano-Composite Solders in Electronic Packaging," Corrosion Resistance, Dr Shih (Ed.), 2012, ISBN: 978-953-51-0467-4, InTech. DOI: https://doi.org/10.5772/33228
  2. E. D. Dunlop, and D. Halton, "The Performance of Crystalline Silicon Photovoltaic Solar Modules after 22 Years of Continuous Outdoor Exposure," Progress in Photovoltaics: Research and Applications, 2006. DOI: https://doi.org/10.1002/pip.627
  3. C. Peike, S. Hoffmann, P. Hülsmann, B. Thaidigsmann, K.A. Weiss, M. Koehl, and P. Bentz, "Origin of damp-heat induced cell degradation," Solar Energy Materials & Solar Cells, 2013. DOI: https://doi.org/10.1016/j.solmat.2013.03.022
  4. M. D. Kempe, G. J. Jorgensen, K. M. Terwilliger, T. J. McMahon, C. E. Kennedy, T. T. Borek, "Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices," Solar Energy Materials and Solar Cells, 2007. DOI: https://doi.org/10.1016/j.solmat.2006.10.009
  5. T. H. Kim, N.C. Park, and D.H. Kim, "The effect of moisture on the degradation mechanism of multi-crystalline silicon photovoltaic module," Microelectronics Reliability, 2013. DOI: https://doi.org/10.1016/j.microrel.2013.07.047
  6. N. C. Park, "A Study on the Reliability of Crystalline Silicon Photovoltaic Module Under Different Temperature and Humidity Conditions," Ph. D. thesis, Korea University, 2013.
  7. T. Shioda, PV Module Reliability Workshop, 2012
  8. T. Shioda, "Acetic acid production rate in EVA encapsulant and its influence on performance of PV modules," 2nd Atlas/NIST PV Materials Durability Workshop, 2013.
  9. R. Sanchez-Tovar, M.T. Montanes, and J. Garcia-Anton, "Thermogalvanic corrosion and galvanic effects of copper and AISI 316L stainless steel pairs in heavy LiBr brines under hydrodynamic conditions," Corrosion Science, vol. 60, pp.118-128, 2012. DOI: https://doi.org/10.1016/j.corsci.2012.04.001
  10. M. Z. Yang, J.L. Luo, Q. Yang, L. J. Qiao, Z. Q. Qin, and P. R. Norton, "Effects of hydrogen on semiconductivity of passive films and corrosion behavior of 310 stainless steel," Journal of the Electrochemical Society, vol. 146, pp. 2107-2112, 1999. DOI: https://doi.org/10.1149/1.1391899
  11. B. M. Ponchel, R. L. Horst, "Aluminium performance of Al-Zn-Sn," Materials Protection, vol. 7, 1968.
  12. S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, and N. Benbrahim, "Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3 wt.% NaCl solution," Corrosion Science, vol. 87, 2014.
  13. J. R. Davis, Corrosion: Understanding the Basics. Materials Park, Ohio: ASM International, 2000.
  14. T. Kaewmaneekul, and G. Lothongkum, "Effect of aluminum on the passivation of zinc-aluminum alloys in artificial seawater," Corrosion Science, vol. 66, 2013.