Abstract
The option pricing of Black와 Scholes (1973) and Merton (1973) has been widely reported to fail to reflect the time varying volatility of financial time series in many real applications. For example, Duan (1995) proposed GARCH option pricing method through Monte Carlo simulation. However, financial time series is known to follow a fat-tailed and leptokurtic probability distribution, which is not explained by Duan (1995). In this paper, in order to overcome such defects, we proposed the option pricing method based on GARCH models with normal mixture errors. According to the analysis of KOSPI200 option price data, the option pricing based on GARCH models with normal mixture errors outperformed the option pricing based on GARCH models with normal errors in the unstable period with high volatility.
Black와 Scholes (1973)와 Merton (1973)의 옵션 가격결정이론에 대한 논문이 발표 된 이후 다양한 실증 분석 결과에 의하여 시간의 흐름에 따라 변동성이 불변한다고 가정하는 Black-Scholes 모형이 시장의 옵션 가격을 적절히 설명하지 못하고 있다는 것이 밝혀지면서 많은 대안적인 연구들이 진행되어 왔다. 예를 들어, Duan (1995)은 위험중립측도 하에서의 몬테카를로 시뮬레이션을 통해 GARCH 모형을 따르는 기초 자산의 옵션가격을 도출하는 방법을 제시하였다. 그러나 실제 주식이나 환율 등의 금융자료에 수익률분포는 정규분포에 비해 꼬리가 두껍고, 급첨의 형태를 보이는 데 Duan (1995)의 옵션가격 결정 방법은 이를 적절히 반영하지 못하고 있다. 이를 해결하기 위해 본 논문에서는 정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격 결정 방법을 제안하고자 한다. KOSPI200 옵션가격 자료를 이용하여 본 논문에서 제시된 옵션가격과 정규분포를 가정한 GARCH 모형에 의해 결정된 옵션가격과 비교한 결과, 금융 자료의 급첨의 성질이 뚜렷한 불안정한 시기인 경우에 오차가 정규혼합모형이라고 가정한 GARCH 모형에 의한 옵션가격 결정의 성과가 월등히 좋아지는 것을 확인할 수 있었다.