DOI QR코드

DOI QR Code

Aminoglycoside susceptibility and genetic characterization of Salmonella enterica subsp. enterica isolated from pet turtles

  • Hossain, Sabrina (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University) ;
  • De Silva, B.C.J. (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University) ;
  • Wimalasena, S.H.M.P. (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University) ;
  • Pathirana, H.N.K.S. (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University) ;
  • Heo, Gang-Joon (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University)
  • 투고 : 2017.03.08
  • 심사 : 2017.03.11
  • 발행 : 2017.03.30

초록

Salmonella enterica subsp. enterica is a common microbial flora in pet turtles, which could opportunistically become pathogenic to human. Their possession of aminoglycoside resistance genes has important significance both in humans and animal medicine. In this study, twenty-one Salmonella enterica subsp. enterica were isolated from thirty-five individual turtles purchased from pet shops and online markets in Korea. In order to characterize the aminoglycoside susceptibility patterns, antimicrobial susceptibility tests were performed against gentamicin, amikacin and kanamycin of aminoglycoside antimicrobial group. Each of the isolates showed susceptibility to all tested aminoglycosides in disk diffusion and minimum inhibitory concentration (MIC) tests. PCR assay was carried out to determine aminoglycoside resistance genes, integron and integron mediated aminoglycoside genes. None of the isolates showed aac(3)-IIa, aac-(6')-Ib, armA, aphAI-IAB aminoglycoside resistance genes. Only, five isolates (24%) harbored class 1 integron related IntI1 integrase gene. The results suggest that Salmonella enterica subsp. enterica strains isolated from pet turtles are less resistance to aminoglycosides and don't harbor any aminoglycosides resistance genes.

키워드

참고문헌

  1. Back DS, Shin GW, Wendt M, Heo GJ. 2016. Prevalence of Salmonella spp. in pet turtles and their environment. Lab Anim Res. 32: 166-170. doi: 10.5625/lar.2016.32.3.166.
  2. Bertelloni F, Chemaly M, Cerri D, Gall FL, Ebani VV. 2016. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol Immunol Hung. 63: 203-216. https://doi.org/10.1556/030.63.2016.2.5
  3. Chen TH, Lue KY. 2010. Population status and distribution of freshwater turtles in Taiwan. Oryx. 44: 261-266. https://doi.org/10.1017/S0030605310000013
  4. Chenia HY. 2016. Prevalence and characterization of plasmidmediated quinolone resistance genes in Aeromonas spp. isolated from South African freshwater fish. Int J Food Microbiol. 231: 26-32. https://doi.org/10.1016/j.ijfoodmicro.2016.04.030
  5. CLSI. 2014. Performance standards for antimicrobial susceptibility testing: Twenty-fourth informational supplement. CLSI M100-S24, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA., USA.
  6. Diaz, MA, Cooper RK, Cloeckaert A, Siebeling RJ. 2006. Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. Appl Environ Microbiol. 72: 306-312. https://doi.org/10.1128/AEM.72.1.306-312.2006
  7. FDA. 2016. Pet turtles: Cute but commonly contaminated with Salmonella. http://www.fda.gov/ForConsumers/Consumer-Updates/ucm048151.htm.
  8. Frana TS, Carlson SA, Griffith RW. 2001. Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype Typhimurium phage type DT104. Appl Environ Microbiol. 67: 445-448. https://doi.org/10.1128/AEM.67.1.445-448.2001
  9. Galimand M, Courvalin P, Lambert T. 2003. Plasmid-mediated high-Level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. 2003. Antimicrob Agents Chemother. 47: 2565-2571. doi:10.1128/AAC.47.8.2565-2571.2003.
  10. Gomez TM, Motarjemi Y, Miyagawa S, Kaferstein FK, Stohr K. 1997. Foodborne salmonellosis. World Health Stat Q. 50: 81-89.
  11. Hopkins KL, Escudero JA, Hidalgo L, Gonzalez-Zorn B. 2010. 16S rRNA methyltransferase RmtC in Salmonella enterica Serovar Virchow. Emerg Infect Dis. 16: 712-715. doi:10.3201/eid1604.090736.
  12. Hossain S, Wimalasena SHMP, Heo GJ. 2017. Virulence factors and antimicrobial resistance pattern of Citrobacter freundii isolated from healthy pet turtles and their environment. Asian J Anim Vet Adv. 12: 10-16. https://doi.org/10.3923/ajava.2017.10.16
  13. Lamm SH, Taylor A Jr, Gangarosa EJ, Anderson HW, Young W, Clark MH, Bruce AR. 1972. Turtle-associated salmonellosis. I. an estimation of the magnitude of the problem in the United States, 1970-1971. Am J Epidemiol. 95: 511-517. https://doi.org/10.1093/oxfordjournals.aje.a121418
  14. Lopes GV, Pissetti C, da Cruz Payao Pellegrini D, da Silva LE, Cardoso M. 2015. Resistance phenotypes and genotypes of Salmonella enterica subsp. enterica isolates from feed, pigs, caracasses in Brazil. J Food Prot. 78: 407-413. https://doi.org/10.4315/0362-028X.JFP-14-274
  15. Lynne AM, Rhodes-Clark BS, Bliven K, Zhao S, Foley, SL. 2008. Antimicrobial Resistance genes associated with Salmonella enterica Serovar Newport Isolates from food animals. Antimicrob Agents Chemother. 52: 353-356. https://doi.org/10.1128/AAC.00842-07
  16. Miko A, Pries K, Schroeter A, Helmuth R. 2005. Molecular mechanisms of resistance in multidrug-resistant serovars of Salmonella enterica isolated from foods in Germany. J Antimicrob Chemother. 56: 1025-1033. https://doi.org/10.1093/jac/dki365
  17. Naghoni A, Ranjbar R, Tabaraie B, Farshad S, Owlia P, Safiri Z, Mammina C. 2010. High prevalence of integron mediated resistance in clinical isolates of Salmonella enterica. Jpn J Infect Dis. 63: 417-421.
  18. Nowakiewicz A, Ziolkowska G, Zieba P, Stepniewska K, Tokarzewski S. 2012. Russian tortoises (Agrionemys horsfieldi) as a potential reservoir for Salmonella spp. Res Vet Sci. 92: 187-190. https://doi.org/10.1016/j.rvsc.2011.03.019
  19. Pfleger S, Benyr G, Sommer R, Hassl A. 2003. Pattern of Salmonella excretion in amphibians and reptiles in a vivarium. Int J Hyg Environ Health 206: 53-59. https://doi.org/10.1078/1438-4639-00184
  20. Ploy MC, Lambert T, Couty JP. 2000. Integrons: an antibiotic resistance gene capture and expression system. Clin. Chem Lab Med. 38: 483-487.
  21. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13: 151-171. https://doi.org/10.1016/j.drup.2010.08.003
  22. Rodriguez I, Rodicio MR, Mendoza MC, Cruz Martin M. 2006. Large conjugative plasmids from clinical strains of Salmonella enterica serovar Virchow contain a class 2 integron in addition to class 1 integrons and several non-integron-associated drug resistance determinants. Antimicrob Agents Chemother. 50: 1603-1607. https://doi.org/10.1128/AAC.50.4.1603-1607.2006
  23. Samadi N, Pakzad I, Monadi Sefidan A, Hosainzadegan H, Tanomand A. 2015. study of aminoglycoside resistance genes in Enterococcus and Salmonella strains isolated from Ilam and Milad hospitals, Iran. Jundishapur Journal of Microbiology. 8: e18102. doi:10.5812/jjm.8(4)2015.18102.
  24. Shane SM, Gilbert R, Harrington KS. 1990. Salmonella colonization in commercial pet turtles (Pseudemys scripta elegans). Epidemiol Infect. 105: 307-16. https://doi.org/10.1017/S0950268800047907
  25. Su LH, Chiu CH. 2007. Salmonella: Clinical importance and evolution of nomenclature. Chang Gung Med. J. 30: 210-9.
  26. Thungapathra M, Amita, Sinha KK, Chaudhuri SR, Garg P, Ramamurthy T, Nair GB, Ghosh A. 2002. Occurrence of antibiotic resistance gene cassettes aac(6')-Ib, dfrA5, dfA12, and ereA2 in Class I Integrons in Non-O1, Non-O139 Vibrio cholerae strains in India. 46: 2948-2955. https://doi.org/10.1128/AAC.46.9.2948-2955.2002
  27. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesus J, Platt DJ, Olsen JE. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 125: 229-255. https://doi.org/10.1017/S0950268899004379
  28. Vakulenko SB, Mobashery S. 2003. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 16: 430-450. https://doi.org/10.1128/CMR.16.3.430-450.2003
  29. Wendt M, Heo GJ. 2016. Multilocus sequence typing analysis of Pseudomonas aeruginosa isolated from pet Chinese stripe-necked turtles (Ocadia sinensis). Lab Anim Res. 32: 208-216. https://doi.org/10.5625/lar.2016.32.4.208
  30. Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Prot. 3: 163-175. https://doi.org/10.1038/nprot.2007.521