DOI QR코드

DOI QR Code

Influence of Particle Size on Evaporation Heat Transfer Characteristics of Nanofluid Droplet

나노입자 크기에 따른 나노유체 액적의 증발 열전달 특성

  • Received : 2017.02.27
  • Accepted : 2017.03.22
  • Published : 2017.03.31

Abstract

The present study investigates the evaporation heat transfer characteristics of nanofluid droplet for different nanoparticle sizes. Also, the heat transfer coefficient was measured at different nanoparticle concentrations during evaporation. From the experimental results, it is found that the evaporation behavior of sessile droplet can be considered as constant radius mode due to pinning effect. The total evaporation time of sessile droplet decreases with nanoparticle size up to 7.9% for 0.10 vol% nanofluid droplet. As nanoparticle concentration increases, the clear difference in heat transfer coefficient is observed, showing that the size effect should be examined. This result would be helpful in designing the correlation between the nanoparticle size and the heat transfer characteristics for various applications.

Keywords

References

  1. S.U.S. Choi, "Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles", Proc. ASMEIMECE 1995, Vol. 231, pp. 99-105.
  2. D.H. Shin, C.K. Choi, Y.T. Kang, S.H. Lee, "Local aggregation characteristics of a nanofluid droplet during evaporation", International Journal of Heat and Mass Transfer 2014, Vol. 72, pp. 336-344. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.023
  3. X. Zhong, A. Crivoi, F. Duan, "Sessile nanofluid droplet drying", Advances in Colloid and Interface Science 2015, Vol. 217, pp. 13-30.
  4. H. Hu, R.G. Larson, "Evaporation of a sessile droplet on a substrate", Journal of Physical Chemistry B 2002, Vol. 106, pp. 1334-1344. https://doi.org/10.1021/jp0118322
  5. T.A.H. Nguyen, A.V. Nguyen, "Increased evaporation kinetics of sessile droplets by using nanoparticles", Langmuir 2012, Vol. 28, pp. 16725-16728. https://doi.org/10.1021/la303293w
  6. J. Chinnam, D.K. Das, R.S. Vajjha, J.R. Satti, "Measurements of the surface tension of nanofluids and development of a new correlation", International Journal of Thermal Sciences 2015, Vol. 98, pp. 68-80. https://doi.org/10.1016/j.ijthermalsci.2015.07.008
  7. Y.C. Kim, "Evaporation of nanofluid droplet on heated surface", Advances in Mechanical Engineering 2015, Vol. 7, pp. 1-8.
  8. C.H. Chon, S. Paik, J.B. Tipton Jr., K.D. Kihm, "Effect of Nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets", Langmuir, Vol. 23, 2007, pp. 2953-2960. https://doi.org/10.1021/la061661y
  9. A. Askounis, D. Orejon, V. Koutsos, K. Sefiane, M.E.R. Shanahan, " Nanoparticle deposits near the contact line of pinned volatile droplets: size and shape revealed by atomic force microscopy", Soft Matter, Vol. 7, 2011, pp. 4152-4155. https://doi.org/10.1039/c1sm05241a
  10. X. Zhong, A. Crivoi, F. Duan, "Sessile nanofluid droplet drying", Advances in Colloid and Interface Science, Vol. 217, 2015, pp. 13-30.
  11. H.H. Lee, S.C. Fu, C.Y. Tso, C.Y.H. Chao, " Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates", International Journal of Heat and Mass Transfer, Vol. 105, 2017, pp. 230-236. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.093
  12. X. Q. Wang, A. S. Mujumdar, "Heat transfer characterstics of nanofluids: a review", International Journal of Thermal Sciences, Vol. 46, 2007, pp. 1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
  13. S. M. S. Murched, S. H. Tan, N. T. Nguyen, "Temperature dependence of interfacial properties and viscosity of nanofluid for droplet-based microfluidics", Journal of Physics D: Applied Physics, Vol. 41, 2008, pp. 085502. https://doi.org/10.1088/0022-3727/41/8/085502
  14. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, "Contact line deposits in an evaporating drop", Physical Review E 2000, Vol. 62, pp. 756-765. https://doi.org/10.1103/PhysRevE.62.756
  15. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature, Vol. 389, 1997, pp. 827-829. https://doi.org/10.1038/39827
  16. M.E.R. Shanahan and K. Sefiane, "Kinetics of triple line motion during evaporation", Contact Angle, Wettability and Adhesion, 6th edition, 2009, pp. 19-31.
  17. 김대윤, 이성혁, "산질화 표면에서 액적의 증발열전달 특성", 한국액체미립화학회, Vol. 21, No. 1, 2016, pp. 53-58. https://doi.org/10.15435/JILASSKR.2016.21.1.53
  18. Y. Xuan, W. Roetzel, "Conceptions for heat transfer correlation of nanofluids", International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 3701-3707. https://doi.org/10.1016/S0017-9310(99)00369-5