참고문헌
- Anedchenko, E. A., Dmitriev, A. A., Krasnov, G. S., Kondrat'eva, T. T., Kopantsev, E. P. and Vinogradova, T. V., et al. 2008. Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer. Mol. Biol. (Mosk.) 42, 965-976.
- Anedchenko, E. A., Kiseleva, N. P., Dmitriev, A. A., Kiselev, F. L., Zabarovskii, E. R. and Senchenko, V. N. 2007. Tumor suppressor gene RBSP3 in cervical carcinoma: copy number and transcriptional level. Mol. Biol. (Mosk.) 41, 86-95. https://doi.org/10.1134/S0026893307010128
- Bahmanyar, S. 2015. Spatial regulation of phospholipid synthesis within the nuclear envelope domain of the endoplasmic reticulum. Nucleus 6, 102-106. https://doi.org/10.1080/19491034.2015.1010942
- Bahmanyar, S., Biggs, R., Schuh, A. L., Desai, A., Muller-Reichert, T. and Audhya, A., et al. 2014. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121-126. https://doi.org/10.1101/gad.230599.113
- Barbosa, A. D., Sembongi, H., Su, W. M., Abreu, S., Reggiori, F., Carman, G. M. and Siniossoglou, S. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26, 3641-3657. https://doi.org/10.1091/mbc.E15-03-0173
- Buratowski, S. 2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541-546. https://doi.org/10.1016/j.molcel.2009.10.019
- Campbell, J. L., Lorenz, A., Witkin, K. L., Hays, T., Loidl, J. and Cohen-Fix, O. 2006. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol. Biol. Cell 17, 1768-1778. https://doi.org/10.1091/mbc.E05-09-0839
- Dai, M., Al-Odaini, A. A., Arakelian, A., Rabbani, S. A., Ali, S. and Lebrun, J. J. 2012. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFbeta-mediated breast cancer cell migration and invasion. Breast Cancer Res. 14, R127.
- Denu, J. M., Stuckey, J. A., Saper, M. A. and Dixon, J. E. 1996. Form and function in protein dephosphorylation. Cell 87, 361-364. https://doi.org/10.1016/S0092-8674(00)81356-2
- Dixon, D. P., Fordham-Skelton, A. P. and Edwards, R. 2005. Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 44, 7696-7703. https://doi.org/10.1021/bi047324a
- Egloff, S. and Murphy, S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280-288. https://doi.org/10.1016/j.tig.2008.03.008
- Fawcett, K. A., Grimsey, N., Loos, R. J., Wheeler, E., Daly, A. and Soos, M., et al. 2008. Evaluating the role of LPIN1 variation in insulin resistance, body weight, and human lipodystrophy in U.K. Populations. Diabetes 57, 2527-2533. https://doi.org/10.2337/db08-0422
- Fu, H., Yang, D., Wang, C., Xu, J., Wang, W., Yan, R. and Cai, Q. 2015. Carboxy-terminal domain phosphatase 1 silencing results in the inhibition of tumor formation ability in gastric cancer cells. Oncol. Lett. 10, 2947-2952. https://doi.org/10.3892/ol.2015.3693
- Guo, X., Engel, J. L., Xiao, J., Tagliabracci, V. S., Wang, X., Huang, L. and Dixon, J. E. 2011. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl. Acad. Sci. USA 108, 18649-18654. https://doi.org/10.1073/pnas.1113170108
- Han, S., Bahmanyar, S., Zhang, P., Grishin, N., Oegema, K. and Crooke, R., et al. 2011. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 287, 3123-3137.
- Han, S., Binns, D. D., Chang, Y. F. and Goodman, J. M. 2015. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p(DeltaNterm) only in combination with Ldb16p. BMC Cell Biol. 16, 29. https://doi.org/10.1186/s12860-015-0075-3
- Hausmann, S. and Shuman, S. 2002. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 277, 21213-21220. https://doi.org/10.1074/jbc.M202056200
- Hayata, T., Ezura, Y., Asashima, M., Nishinakamura, R. and Noda, M. 2015. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-beta signaling. J. Bone Miner. Res. 30, 947. https://doi.org/10.1002/jbmr.2479
- Irie, K., Takase, M., Araki, H. and Oshima, Y. 1993. A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein. Mol. Gen. Genet. 236, 283-288.
- Kashuba, V. I., Li, J., Wang, F., Senchenko, V. N., Protopopov, A. and Malyukova, A., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. USA 101, 4906-4911. https://doi.org/10.1073/pnas.0401238101
- Kashuba, V. I., Pavlova, T. V., Grigorieva, E. V., Kutsenko, A., Yenamandra, S. P. and Li, J., et al. 2009. High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One 4, e5231. https://doi.org/10.1371/journal.pone.0005231
- Khan, M. A., Tania, M., Wei, C., Mei, Z., Fu, S. and Cheng, J., et al. 2015. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6, 19580-19591.
- Kim, H., Erickson, B., Luo, W., Seward, D., Graber, J. H. and Pollock, D. D., et al. 2010. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279-1286. https://doi.org/10.1038/nsmb.1913
- Kim, Y., Gentry, M. S., Harris, T. E., Wiley, S. E., Lawrence, J. C. Jr. and Dixon, J. E. 2007. A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Natl. Acad. Sci. USA 104, 6596-6601. https://doi.org/10.1073/pnas.0702099104
- Kim, Y. J. and Bahk, Y. Y. 2014. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners. Biochem. Biophys. Res. Commun. 448, 189-194. https://doi.org/10.1016/j.bbrc.2014.04.089
- Kloet, D. E., Polderman, P. E., Eijkelenboom, A., Smits, L. M., van Triest, M. H. and van den Berg, M. C., et al. 2015. FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21(Cip1/Waf1). Biochem. J. 469, 289-298. https://doi.org/10.1042/BJ20140831
- Lin, Y. C., Lu, L. T., Chen, H. Y., Duan, X., Lin, X. and Feng, X. H., et al. 2014. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res. 74, 6935-6946. https://doi.org/10.1158/0008-5472.CAN-14-1330
- Lindegaard, B., Larsen, L. F., Hansen, A. B., Gerstoft, J., Pedersen, B. K. and Reue, K. 2007. Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy. Int. J. Obes. (Lond.) 31, 449-456. https://doi.org/10.1038/sj.ijo.0803434
- Ma, Y. N., Zhang, X., Yu, H. C. and Zhang, J. W. 2010. CTD small phosphatase like 2 (CTDSPL2) can increase epsilon- and gamma-globin gene expression in K562 cells and CD34+ cells derived from umbilical cord blood. BMC Cell Biol. 11, 75. https://doi.org/10.1186/1471-2121-11-75
- Masuda, M., Oshima, A., Noguchi, T. and Kagiwada, S. 2015. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation. J. Biochem. 159, 351-361.
- Mayfield, J. E., Burkholder, N. T. and Zhang, Y. J. 2016. Dephosphorylating eukaryotic RNA polymerase II. Biochim. Biophys. Acta 1864, 372-387. https://doi.org/10.1016/j.bbapap.2016.01.007
- Mayfield, J. E., Fan, S., Wei, S., Zhang, M., Li, B. and Ellington, A. D., et al. 2015. Chemical tools to decipher regulation of phosphatases by proline isomerization on eukaryotic RNA polymerase II. ACS Chem. Biol. 10, 2405-2414. https://doi.org/10.1021/acschembio.5b00296
- Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. and Cramer, P. 2005. A structural perspective of CTD function. Genes Dev. 19, 1401-1415. https://doi.org/10.1101/gad.1318105
- Mul, J. D., Nadra, K., Jagalur, N. B., Nijman, I. J., Toonen, P. W. and Medard, J. J., et al. 2011. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J. Biol. Chem. 286, 26781-26793. https://doi.org/10.1074/jbc.M110.197947
- Mustelin, T. 2007. A brief introduction to the protein phosphatase families. Methods Mol. Biol. 365, 9-22.
- Nesti, E., Corson, G. M., McCleskey, M., Oyer, J. A. and Mandel, G. 2014. C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc. Natl. Acad. Sci. USA 111, E3929-3936. https://doi.org/10.1073/pnas.1414770111
- Notredame, C., Higgins, D. G. and Heringa, J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217. https://doi.org/10.1006/jmbi.2000.4042
- O'Hara, L., Han, G. S., Peak-Chew, S., Grimsey, N., Carman, G. M. and Siniossoglou, S. 2006. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J. Biol. Chem. 281, 34537-34548. https://doi.org/10.1074/jbc.M606654200
- Payne, V. A., Grimsey, N., Tuthill, A., Virtue, S., Gray, S. L. and Dalla Nora, E., et al. 2008. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57, 2055-2060. https://doi.org/10.2337/db08-0184
- Peterfy, M., Phan, J., Xu, P. and Reue, K. 2001. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 27, 121-124. https://doi.org/10.1038/83685
- Phan, J. and Reue, K. 2005. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1, 73-83. https://doi.org/10.1016/j.cmet.2004.12.002
- R, H. R., Kim, H., Noh, K. and Kim, Y. J. 2014. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep. 47, 192-196. https://doi.org/10.5483/BMBRep.2014.47.4.060
- Rosonina, E. and Blencowe, B. J. 2004. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage. RNA 10, 581-589. https://doi.org/10.1261/rna.5207204
- Sakaguchi, M., Sharmin, S., Taguchi, A., Ohmori, T., Fujimura, S. and Abe, T., et al. 2013. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat. Commun. 4, 1398. https://doi.org/10.1038/ncomms2408
- Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. and Siniossoglou, S. 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931-1941. https://doi.org/10.1038/sj.emboj.7600672
- Sapkota, G., Knockaert, M., Alarcon, C., Montalvo, E., Brivanlou, A. H. and Massague, J. 2006. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J. Biol. Chem. 281, 40412-40419. https://doi.org/10.1074/jbc.M610172200
- Satow, R., Chan, T. C. and Asashima, M. 2002. Molecular cloning and characterization of dullard: a novel gene required for neural development. Biochem. Biophys. Res. Commun. 295, 85-91. https://doi.org/10.1016/S0006-291X(02)00641-1
- Senchenko, V. N., Anedchenko, E. A., Kondratieva, T. T., Krasnov, G. S., Dmitriev, A. A. and Zabarovska, V. I., et al. 2010. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 10, 75. https://doi.org/10.1186/1471-2407-10-75
- Shi, Y. 2009. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468-484. https://doi.org/10.1016/j.cell.2009.10.006
- Sim, M. F., Dennis, R. J., Aubry, E. M., Ramanathan, N., Sembongi, H. and Saudek, V., et al. 2012. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. Mol. Metab. 2, 38-46.
- Sim, M. F., Talukder, M. M., Dennis, R. J., O'Rahilly, S., Edwardson, J. M. and Rochford, J. J. 2013. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 56, 2498-2506. https://doi.org/10.1007/s00125-013-3029-3
- Sim, M. F., Talukder, M. U., Dennis, R. J., Edwardson, J. M. and Rochford, J. J. 2014. Analyzing the functions and structure of the human lipodystrophy protein seipin. Methods Enzymol. 537, 161-175.
- Sinha, S., Singh, R. K., Alam, N., Roy, A., Roychoudhury, S. and Panda, C. K. 2008. Frequent alterations of hMLH1 and RBSP3/HYA22 at chromosomal 3p22.3 region in early and late-onset breast carcinoma: clinical and prognostic significance. Cancer Sci. 99, 1984-1991.
- Son, S. and Osmani, S. A. 2009. Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot. Cell 8, 573-585. https://doi.org/10.1128/EC.00346-08
- Su, Y. A., Lee, M. M., Hutter, C. M. and Meltzer, P. S. 1997. Characterization of a highly conserved gene (OS4) amplified with CDK4 in human sarcomas. Oncogene 15, 1289-1294. https://doi.org/10.1038/sj.onc.1201294
- Suh, M. H., Ye, P., Zhang, M., Hausmann, S., Shuman, S., Gnatt, A. L. and Fu, J. 2005. Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD. Proc. Natl. Acad. Sci. USA 102, 17314-17319. https://doi.org/10.1073/pnas.0507987102
- Sun, G., Hu, Z., Min, Z., Yan, X., Guan, Z. and Su, H., et al. 2015. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor beta (TGFbeta)-mediated Germ Layer Induction in Xenopus Embryos. J. Biol. Chem. 290, 17239-17249. https://doi.org/10.1074/jbc.M115.655605
- Szymanski, K. M., Binns, D., Bartz, R., Grishin, N. V., Li, W. P. and Agarwal, A. K., et al. 2007. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. USA 104, 20890-20895. https://doi.org/10.1073/pnas.0704154104
- Tanaka, S. S., Nakane, A., Yamaguchi, Y. L., Terabayashi, T., Abe, T. and Nakao, K., et al. 2013. Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 8, e57428. https://doi.org/10.1371/journal.pone.0057428
- Thompson, J., Lepikhova, T., Teixido-Travesa, N., Whitehead, M. A., Palvimo, J. J. and Janne, O. A. 2006. Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J. 25, 2757-2767. https://doi.org/10.1038/sj.emboj.7601161
- Urrutia, H., Aleman, A. and Eivers, E. 2016. Drosophila Dullard functions as a Mad phosphatase to terminate BMP signaling. Sci. Rep. 6, 32269. https://doi.org/10.1038/srep32269
- Varon, R., Gooding, R., Steglich, C., Marns, L., Tang, H. and Angelicheva, D., et al. 2003. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat. Genet. 35, 185-189. https://doi.org/10.1038/ng1243
- Visconti, R., Della Monica, R., Palazzo, L., D'Alessio, F., Raia, M. and Improta, S., et al. The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death Differ. 22, 1551-1560. https://doi.org/10.1038/cdd.2015.13
- Visconti, R., Palazzo, L., Della Monica, R. and Grieco, D. 2012. Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat. Commun. 3, 894. https://doi.org/10.1038/ncomms1886
- Wang, W., Liao, P., Shen ,M., Chen, T., Chen, Y. and Li, Y., et al. 2015. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 35, 491-500.
- Wani, S., Sugita, A., Ohkuma, Y. and Hirose, Y. 2016. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation. J. Biochem. 160, 111-120. https://doi.org/10.1093/jb/mvw018
- Wee, K., Yang, W., Sugii, S. and Han, W. 2014. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci. Rep. 34, e00141
- Witkin, K. L., Friederichs, J. M., Cohen-Fix, O. and Jaspersen, S. L. 2010 Changes in the nuclear envelope environment affect spindle pole body duplication in Saccharomyces cerevisiae. Genetics 186, 867-883. https://doi.org/10.1534/genetics.110.119149
- Wolinski, H., Hofbauer, H. F., Hellauer, K., Cristobal-Sarramian, A., Kolb, D. and Radulovic, M., et al. 2015. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim. Biophys. Acta 1851, 1450-1464. https://doi.org/10.1016/j.bbalip.2015.08.003
- Wrighton, K. H., Willis, D., Long, J., Liu, F., Lin, X. and Feng, X. H. 2006. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J. Biol. Chem. 281, 38365-38375. https://doi.org/10.1074/jbc.M607246200
- Yeo, M., Lee, S. K., Lee, B., Ruiz, E. C., Pfaff, S. L. and Gill, G. N. 2005. Small CTD phosphatases function in silencing neuronal gene expression. Science 307, 596-600. https://doi.org/10.1126/science.1100801
- Yeo, M. and Lin, P. S. 2007. Functional characterization of small CTD phosphatases. Methods Mol. Biol. 365, 335-346.
- Yeo, M., Lin, P. S., Dahmus, M. E. and Gill, G. N. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078-26085. https://doi.org/10.1074/jbc.M301791200
- Yun, J. H., Ko, S., Lee, C. K., Cheong, H. K., Cheong, C., Yoon, J. B. and Lee, W. 2013. Solution structure and Rpn1 interaction of the UBL domain of human RNA polymerase II C-terminal domain phosphatase. PLoS One 8, e62981. https://doi.org/10.1371/journal.pone.0062981
- Zhang, D. W., Mosley, A. L., Ramisetty, S. R., Rodriguez-Molina, J. B., Washburn, M. P. and Ansari, A. Z. 2012. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J. Biol. Chem. 287, 8541-8551. https://doi.org/10.1074/jbc.M111.335687
- Zhang, M., Cho, E. J., Burstein, G., Siegel, D. and Zhang, Y. 2011. Selective inactivation of a human neuronal silencing phosphatase by a small molecule inhibitor. ACS Chem. Biol. 6, 511-519. https://doi.org/10.1021/cb100357t
- Zhang, M., Liu J., Kim, Y., Dixon, J. E., Pfaff, S. L. and Gill, G. N., et al. 2010. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci. 19, 974-986.
- Zhang, Y., Kim, Y., Genoud, N., Gao, J., Kelly, J. W. and Pfaff, S. L., et al. 2006. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24, 759-770. https://doi.org/10.1016/j.molcel.2006.10.027
- Zhao, Y., Xiao, M., Sun, B., Zhang, Z., Shen, T. and Duan, X., et al. 2014. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J. Biol. Chem. 289, 26441-26450. https://doi.org/10.1074/jbc.M114.568964
- Zheng, H., Ji, C., Gu, S., Shi, B., Wang, J., Xie, Y. and Mao, Y. 2005. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Biochem. Biophys. Res. Commun. 331, 1401-1407. https://doi.org/10.1016/j.bbrc.2005.04.065
- Zhong, R., Ge, X., Chu, T., Teng, J., Yan, B. and Pei, J., et al. 2015. Lentivirus-mediated knockdown of CTDP1 inhibits lung cancer cell growth in vitro. J. Cancer Res. Clin. Oncol. 142, 723-732.
- Zohn, I. E. and Brivanlou, A. H. 2001. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Dev. Biol. 239, 118-131. https://doi.org/10.1006/dbio.2001.0420