DOI QR코드

DOI QR Code

Association between IDH3B Genotypes and Economic Traits in a Crossbred F2 Population between Duroc and Jeju Native Black Pigs

제주재래흑돼지와 듀록 교배 세대에서 IDH3B 유전자형과 경제형질의 연관성

  • Park, Hee-Bok (Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration) ;
  • Han, Sang-Hyun (Educational Science Research Institute, Jeju National University) ;
  • Kang, Yong-Jun (Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration) ;
  • Shin, Moon-Cheol (Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Jae-Bong (Korea Zoonosis Research Institute, Chonbuk National University) ;
  • Cho, In-Cheol (Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration)
  • 박희복 (국립축산과학원 난지축산연구소) ;
  • 한상현 (제주대학교 교육과학연구소) ;
  • 강용준 (국립축산과학원 난지축산연구소) ;
  • 신문철 (국립축산과학원 난지축산연구소) ;
  • 이재봉 (전북대학교 인수공통질병연구소) ;
  • 조인철 (국립축산과학원 난지축산연구소)
  • Received : 2016.12.30
  • Accepted : 2017.02.17
  • Published : 2017.03.30

Abstract

This study examined the association between genotypes of the isocitrate dehydrogenase 3, beta subunit (IDH3B) gene and economic traits in an $F_2$ population of Duroc and Jeju (South Korea) native black pigs (JBPs). The genotypes was determined the presence/absence of a 304-bp insertion/deletion fragment in the promoter region of the IDH3B gene for JBP, Duroc, and their $F_1$ and $F_2$ progeny. Three genotypes (AA, AB and BB) were found in the $F_1$ and $F_2$ populations, but there was no AA genotype found in JBP and no BB in Duroc. Association analysis results showed the significant differences with carcass weights (CW), backfat thicknesses (BFT) and eye muscle area (EMA) (p<0.05), but not with growth traits including body weights and average daily gains at different stages, reproductive traits including teat numbers, and crude fat contents (CFAT) measured in longissimus dorsi (p>0.05). The $F_2$ pigs possessing the IDH3B BB homozygote had heavier CW ($72.92{\pm}11.133kg$), thicker BFT ($25.75{\pm}6.06mm$), and larger EMA ($23.82{\pm}4.825cm^2$) than those from the other genotypes (p<0.05). These results were estimated that there are biological roles related with IDH3B genotypes resulting development of EMA, BFT, and CW but not with intramuscular fat deposition during late period of pig production. Our findings suggest that the 304-bp insertion allele of porcine IDH3B may be a genetic marker for marker assistant selection for improving meat productivity of the Jeju Black pig and Duroc-related molecular breeding systems.

제주재래흑돼지와 듀록의 교배 $F_2$ 집단에서 경제형질과 isocitrate dehydrogenase 3, beta subunit (IDH3B) 유전자의 유전자형의 연관을 시험하였다. IDH3B 유전자형은 promoter 영역에서 304-bp 삽입/결실 절편의 유무를 기준으로 기초축군과 $F_1$, $F_2$에서 판독하였다. 세 가지 유전자형(AA, AB, BB)이 $F_1$$F_2$에서는 모두 발견되었으나, JBP에서는 AA 유전자형이, Duroc에서는 BB 유전자형이 발견되지 않았다. 연관 분석결과에서 도체중(CW), 등지방두께(BFT)와 등심단면적(EMA)의 수준이 유전자형에 따라 유의적인 차이를 보였으나(p<0.05), 각기 다른 성장시기별로 측정된 체중들과 일당증체량을 포함한 성장형질, 유두수를 포함한 번식형질, 등심 내 조지방함량(CFAT)의 수준은 유의적인 차이가 없었다(p>0.05). IDH3B AA 동형접합자인 $F_2$ 돼지들은 다른유전자형을 보유한 개체들에 비해 도체중이 더 무겁고($72.92{\pm}11.133kg$), 등지방두께는 더 두껍고($25.75{\pm}6.06mm$), 등심단면적은 더 넓은 수준($23.82{\pm}4.825cm^2$)을 보였다(p<0.05). 이상은 비육돈 생산 후기에 근내지방의 축적과 상관없이, 등심단면적, 등지방두께, 도체중의 증가가 IDH3B 유전자형과 연관된 생물학적 작용에 의한 결과라 하겠다. 돼지 IDH3B의 304-bp 삽입 대립 유전자는 제주재래흑돼지와 Duroc-관련 분자육종체계에서 돈육 생산성 향상을 위한 분자도움선발의 유전적 마커로 이용될 것으로 기대된다.

Keywords

References

  1. Cho, C. I., Lee, J. H. Park, B. H. and Lee, D. H. 2013a. A whole genome-wide association study for growth traits in a $F_2$ crossbred population between Landrace and Jeju indegenous pig. J. Agr. Life Sci. 47, 75-84.
  2. Cho, I. C., Kim S. K., Kim, Y. K., Kang, Y. J., Yang, S. N., Park, Y. S., Cho, W. M., Cho, S. R., Kim, N. Y., Chae, H. S., Seong, P. N., Park, B. Y., Lee, J. H., Lee, J. B., Yoo, C. K., Han, S. H. and Ko, M. S. 2013b. Association between numerical variations of vertebrae and carcass traits in Jeju native black pigs, Landrace pigs, and crossbred $F_2$ population. J. Life Sci. 23, 854-862. https://doi.org/10.5352/JLS.2013.23.7.854
  3. Cho, I. C., Park, H. B., Yoo, C. K., Lee, G. J., Lim, H. T., Lee, J. B., Jung, E. J., Ko, M. S., Lee, J. H. and Jeon, J. T. 2011. QTL analysis of white blood cell, platelet and red blood cell-related traits in an $F_2$ intercross between Landrace and Korean native pigs. Anim. Genet. 42, 621-626. https://doi.org/10.1111/j.1365-2052.2011.02204.x
  4. Cho, I. C., Yoo, C. K., Lee, J. B., Jung, E. J., Han, S. H., Lee, S. S., Ko, M. S., Lim, H. T. and Park, H. B. 2015. Genome-wide QTL analysis of meat quality-related traits in a large $F_2$ intercross between Landrace and Korean native pigs. Genet. Sel. Evol. 47, 7. https://doi.org/10.1186/s12711-014-0080-6
  5. Cho, S. H., Park, B. Y., Kim, J. H., Kim, M. J., Seong, P. N., Kim, Y. J., Kim, D. H. and Ahn, C. N. 2007. Carcass yields and meat quality by live weight of Korean Native Black pigs. J. Anim. Sci. Technol. 49, 523-530. https://doi.org/10.5187/JAST.2007.49.4.523
  6. Choi, B. H., Lee, H. Y., Hong, K. C., Cheong, I. C. and Kim, T. H. 2004. Identification of quantitative trait loci (QTL) for meat color trait on chromosome 7 in pig. J. Anim. Sci. Technol. 46, 525-536. https://doi.org/10.5187/JAST.2004.46.4.525
  7. Cohen, P. F. and Colman, R. F. 1972. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Characterization of the active substrate and modes of regulation. Biochemistry 11, 1501-1508. https://doi.org/10.1021/bi00758a027
  8. Han, S. H., Shin, K. Y., Lee, S. S., Ko, M. S., Jeong, D. K., Oh, H. S., Yang, B. C. and Cho, I. C. 2010. SINE indel polymorphism of AGL gene and association with growth and carcass traits in Landrace x Jeju Black pig $F_2$ population. Mol. Biol. Rep. 37, 467-471. https://doi.org/10.1007/s11033-009-9644-x
  9. Han, S. H., Shin, K. Y., Lee, S. S., Ko, M. S., Oh, H. S. and Cho, I. C. 2012. Porcine SPP1 gene polymorphism association with phenotypic traits in the Landrace$\times$Jeju (Korea) Black pig F2 population. Mol. Biol. Rep. 39, 7705-7709. https://doi.org/10.1007/s11033-012-1606-z
  10. Hathaway, J. A. and Atkinson, D. E. 1963. The effect of adenylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenase, a possible metabolic control mechanism. J. Biol. Chem. 238, 2875-2881.
  11. Hartong, D. T., Dange, M., McGee, T. L., Berson, E. L., Dryja, T. P. and Colman, R. F. 2008. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nature Genet. 40, 1230-1234. https://doi.org/10.1038/ng.223
  12. Huh, T. L., Kim, Y. O., Oh, I. U., Song, B. J. and Inazawa, J. 1996. Assignment of the human mitochondrial $NAD^+$-specific isocitrate dehydrogenase alpha subunit (IDH3A) gene to $15q25.1{\rightarrow}q25.2$ by in situ hybridization. Genomics 32, 295-296. https://doi.org/10.1006/geno.1996.0120
  13. Jin, S., Kim, C., Song, Y., Jang, W., Kim, Y., Yeo, J., Kim, J. and Kang, K. 2001. Physicochemical characteristics of longissimus muscle between the Korean native pig and Landrace. Kor. J. Food Sci. Anim. Resour. 21, 142-148.
  14. Kalinowski, S. T., Taper, M. L. and Marshall, T. C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  15. Kang, Y. J., Jeong, D. K., Cho, I. C. and Han, S. H. 2016. Association between genotypes of the isocitrate dehydrogenase 3, beta subunit (IDH3B) gene and carcass traits in an $F_2$ crossbred population of Landrace$\times$Jeju (Korea) Black pigs. J. Life Sci. 26, 414-418. https://doi.org/10.5352/JLS.2016.26.4.414
  16. Kim, H. S., Kim, B. W., Kim, H. Y., Lim, H. T., Yang, H. S., Lee, J. I., Joo, Y. K., Do, C. H., Joo, S. T., Jeon, J. T. and Lee, J. G. 2007. Estimation of terminal sire effect on swine growth and meat quality traits. J. Anim. Sci. Technol. 49, 161-170. https://doi.org/10.5187/JAST.2007.49.2.161
  17. Lee, K. T., Byun, M. J., Kang, K. S, Hwang, H., Park, E. W., Kim, J. M., Kim, T. H. and Lee, S. H. 2012. Single nucleotide polymorphism association study for backfat and intramuscular fat content in the region between SW2098 and SW1881 on pig chromosome 6. J. Anim. Sci. 90, 1081-1087. https://doi.org/10.2527/jas.2011-4228
  18. Li, X., Kim, S. W., Do, K. T., Ha, Y. K., Lee, Y. M., Yoon, S. H., Kim, H. B., Kim, J. J., Choi, B. H. and Kim, K. S. 2011. Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies. Mol. Biol. Rep. 38, 3805-3820. https://doi.org/10.1007/s11033-010-0496-1
  19. MacDonald, M. J., Brown, L. J., Longacre, M. J., Stoker, S. W. and Kendrick, M. A. 2013. Knockdown of both mitochondrial isocitrate dehydrogenase enzymes in pancreatic beta cells inhibits insulin secretion. Biochim. Biophys. Acta 1830, 5104-5111. https://doi.org/10.1016/j.bbagen.2013.07.013
  20. Maharani, D., Park, H. B., Lee, J. B., Yoo, C. K., Lim, H. T., Han, S. H., Lee, S. S., Ko, M. S., Cho, I. C. and Lee, J. H. 2013. Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs. Mol. Biol. Rep. 40, 73-80. https://doi.org/10.1007/s11033-012-2014-0
  21. Moon, Y. H. 2004. Physicochemical properties and palatability of Loin from crossbred Jeju Black pigs. Kor. J. Food Sci. Ani. Resour. 24, 238-245.
  22. Park, J. C., Kim, Y. H., Jung, H. J., Park, B. Y., Lee, J. I. and Moon, H. K. 2005. Comparison of meat quality and physicochemical characteristics of pork between Korean native black pigs (KNBP) and Landrace by market weight. J. Anim. Sci. Technol. 47, 91-98. https://doi.org/10.5187/JAST.2005.47.1.091
  23. Ren, Z., Liu, W., Zheng, R., Zuo, B., Xu, D., Lei, M., Li, F., Li, J., Ni, D. and Xiong, Y. 2012. A 304 bp insertion/deletion mutation in promoter region induces the increase of porcine $IDH3{\beta}$ gene expression. Mol. Biol. Rep. 39, 1419-1426. https://doi.org/10.1007/s11033-011-0876-1
  24. SAS program package. 1999. SAS/STAT software for PC. Release 8.0.1. SAS Institute Inc, Cary, NC, USA.
  25. Sambrook, J., Fritsch, E. F. and Manniatis, T. 1989. Isolation of high-molecular-weight DNA from mammalian cells. In: Molecular cloning: a laboratory manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press. pp. 9.14-9.23.
  26. Won, J. I., Lee, K. S., Kim, S. D., Yoon, H. B., Jeon, S. K., Yoon, J. H., Kim, J. B. and Lee, J. K. 2014. Estimation of growth curve parameters for evaluation of growth characteristics of purebred Korean Native pigs and crossbred between Korean Native sows and Duroc boars. J. Agr. Life Sci. 48, 155-163. https://doi.org/10.14397/jals.2014.48.4.155
  27. Yoo, C. K., Park, H. B., Lee, J. B., Jung, E. J., Kim, B. M., Kim, H. I., Ahn, S. J., Ko, M. S., Cho, I. C. and Lim, H. T. 2014. QTL analysis of body weight and carcass body length traits in an $F_2$ intercross between Landrace and Korean native pigs. Anim. Genet. 45, 589-592. https://doi.org/10.1111/age.12166
  28. Zeng, A. P. and Deckwer, W. D. 1994. Pathway analysis of oxygen utilization and tricarboxylic acid cycle activity in Saccharomyces cerevisiae growing on glucose. J. Biotechnol. 37, 67-77. https://doi.org/10.1016/0168-1656(94)90204-6