DOI QR코드

DOI QR Code

화장품 소재로서 후박 에틸아세테이트 분획물의 미백활성에 관한 효과

A Study of the Whitening Activities of Magnolia obovata Bark Ethyl Acetate Fractions as Cosmetic Ingredient

  • 투고 : 2017.01.24
  • 심사 : 2017.03.30
  • 발행 : 2017.03.31

초록

천연물인 후박(Magnolia obovata Bark, M. obovata Bark)을 에탄올 추출 및 농축하여 에틸아세테이트 층으로 분획한 분획물이 피부에 안전하고 효과적인 미백 활성을 확인함으로써 미백 화장품 원료 소재로서 가능성을 확인하였다. 후박의 에탄올 농축물을 에틸아세테이트 분획하여 유효물질 honokiol을 HPLC로 정량하였다. 후박 에틸아세테이트 분획물에 대한 in vitro 미백활성 결과, 농도 의존적으로 세포 외 멜라닌 분비를 감소시켜 $IC_{50}=11.05{\mu}g/mL$임을 확인하였다. 또한 세포에 독성을 가지지 않는 최대농도인 $12.5{\mu}g/mL$ 처리 시 최대 약 60%의 멜라닌 분비 억제로 세포 외로 분비되는 멜라닌의 양을 효과적으로 억제함을 확인할 수 있었다. 또한 ${\alpha}-MSH$ (50 nM) 처리한 그룹과 비교하여 $IC_{50}=10.85{\mu}g/mL$로 우수한 세포 내 멜라닌 생성억제 효과를 보였으며 세포에 자극이 되지 않는 최대농도인 $12.5{\mu}g/mL$ 처리 시 최대 약 59%의 멜라닌 생성 억제를 확인하여 세포 외 멜라닌 분비 뿐만 아니라 세포 내에 존재하는 멜라닌의 양 또한 효과적으로 억제함을 확인할 수 있었다. 양성대조군으로 사용된 ${\alpha}-arbutin$의 경우, $IC_{50}=59.99{\mu}g/mL$로 후박 에틸아세테이트 분획물이 양성대조군 ${\alpha}-arbutin$과 비교하여 우수한 세포 내 멜라닌 생성 억제 효과를 가짐을 확인하였다. 임상연구의 경우, 후박 에틸아세테이트 분획물을 적용한 화장품 크림은 (주)대한피부과학연구소(KDRI) 윤리위원회의 IRB 승인(KDRI-IRB-1536) 후 반복 첩포를 통한 인체 누적첩포시험을 진행하여 무감작 물질로 확인하였다. 또한 후박 에틸아세테이트 분획물을 적용한 화장품 크림은 대조군 대비 국소적 미백효과와 신뢰성 있는 피부 안전성을 보여주었다. 최종적으로 후박 에틸아세테이트 분획물이 안전하고 효과적인 미백효과를 가지는 화장품 소재로 충분한 이용 가능성이 있음을 확인하였다.

EtOAc fractions of Magnolia obovata (M. obovata) Bark extracts were studied for the potential ingredient as a safe and effective whitening cosmetic material. The concentration of active substances honokiol was determined by HPLC. In vitro, the fractions reduced the extracellular and intracellular melanin contents in B16F10 cells in dose dependently and inhibited extracellular melanin secretion ($IC_{50}=11.05{\mu}g/mL$). The $12.5{\mu}g/mL$ treatment of maximum concentration effectively inhibited up to about 60% to the amount of extracullular melanin. Also, the $12.5{\mu}g/mL$ treatment of maximum concentration effectively inhibited up to about 59% to the amount of intracullular melanin ($IC_{50}=10.85{\mu}g/mL$). The $IC_{50}$ value of ${\alpha}-arbutin$ used as a positive control was $59.99{\mu}g/mL$. So, EtOAc fractions of M. obovata Bark extracts showed whitening effect when compared with the non-treatment group. In case of in vivo study, Cosmetic cream with EtOAc fractions of M. obovata Bark extracts was approved by Ethics committee of KDRI (IRB number: KDRI-IRB-1537). As a result in progress for skin sensitization as well as assessment of skin irritation through repeated patch test, skin allergens was identified as non sensitizing agents. Also, cosmetic cream with EtOAc fractions of M. obovata Bark extracts showed significant topical whitening effect and reliable skin safety when compared with the non-treatment group. In conclusion, EtOAc fractions of M. obovata Bark extracts may be a useful cosmetic ingredient for effective skin whitening.

키워드

참고문헌

  1. A. J. Thody, E. M. Higgins, K. Wakamatsu, S. Ito, S. A. Burchill, and J. M. Marks, Pheomelanin as well as eumelanin is present in human epidermis, J. Invest. Dermatol., 97(2), 340 (1991). https://doi.org/10.1111/1523-1747.ep12480680
  2. A. Hennessy, C. Oh, B. Diffey, K. Wakamatsu, S. Ito, and J. Rees, Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation, Pigment Cell Res., 18(3), 220 (2005). https://doi.org/10.1111/j.1600-0749.2005.00233.x
  3. T. H. Nasti and L. Timares, MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer, Photochem. Photobiol., 91(1), 188 (2015). https://doi.org/10.1111/php.12335
  4. F. Rouzaud, A. L. Kadekaro, Z. A. Abdel-malek, and V. J. Hearing, MC1R and the response of melanocytes to ultraviolet radiation, Mutat. Res., 571(1-2), 133 (2005). https://doi.org/10.1016/j.mrfmmm.2004.09.014
  5. R. A. Newton, S. E. Smit, C. C. Barnes, J. Pedley, P. G. Parsons, and R. A. Sturm, Activation of the cAMP pathway by variant human MC1R alleles expressed in HEK and in melanoma cells, Peptides., 26(10), 1818 (2005). https://doi.org/10.1016/j.peptides.2004.11.031
  6. R. A. Newton, D. W. Roberts, J. H. Leonard, and R. A. Sturm, Human melanocytes expressing MC1R variant alleles show impaired activation of multiple signaling pathways, Peptides., 28(12), 2387 (2007). https://doi.org/10.1016/j.peptides.2007.10.003
  7. R. A. Sturm, D. L. Duffy, N. F. Box, R. A. Newton, A. G. Shepherd, W. Chen, L. H. Marks, J. H. Leonard, and N. G. Martin, Genetic association and cellular function of MC1R variant alleles in human pigmentation, Ann. N. Y. Acad. Sci., 994(1), 348 (2003). https://doi.org/10.1111/j.1749-6632.2003.tb03199.x
  8. D. Jian, D. Jiang, J. Su, W. Chen, X. Hu, Y. Kuang, H. Xie, J. Li, and X. Chen, Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells, Steroids., 76(12), 1297 (2011). https://doi.org/10.1016/j.steroids.2011.06.008
  9. S. S. Kim, M. J. Kim, Y. H. Choi, B. K. Kim, K. S. Kim, K. J. Park, S. M. Park, N. H. Lee, and C. G. Hyun, Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16F10 melanoma, Asian Pac. J. Trop. Biomed., 3(8), 617 (2013). https://doi.org/10.1016/S2221-1691(13)60125-2
  10. W. J. Yoon, M. J. Kim, J. Y. Moon, H. J. Kang, G. Kim, N. H. Lee, and C. G. Hyun, Effect of palmitoleic acid on melanogenic protein expression in murine B16 melanoma, J. Oleo. Sci., 59(6), 315 (2010). https://doi.org/10.5650/jos.59.315
  11. M. Otreba, J. Rok, E. Buszman, and D. Wrzesniok, Regulation of melanogenesis: the role of cAMP and MITF, Postepy. Hig. Med. Dosw., 30(66), 33 (2012).
  12. E. Jung, J. A. Lee, S. Shin, K. B. Roh, J. H. Kim, and D. Park, Madecassoside inhibits melanin synthesis by blocking ultraviolet-induced inflammation, Molecules., 18(12), 15724 (2013). https://doi.org/10.3390/molecules181215724
  13. J. W. Haycock, M. Wagner, R. Morandini, G. Ghanem, I. G. Rennie, and S. M. Neil, ${\alpha}$-melanocyte-stimulating hormone inhibits NF-${\kappa}B$ activation in human melanocytes and melanoma cells, J. Invest. Dermatol., 113(4), 560 (1999). https://doi.org/10.1046/j.1523-1747.1999.00739.x
  14. A. Soumyanath, R. Venkatasamy, M. Joshi, L. Faas, B. Adejuyigbe, A. F. Drake, R. C. Hider, A. R. Young. A. Soumyanath, R. Venkatasamy, M. Joshi, L. Faas, B. Adejuyigbe, A. F. Drake, R. C. Hider, and A. R. Young, UV Irradiation affects melanocyte stimulatory activity and protein binding of piperine, Photochem. Photobiol., 82(6), 1541 (2006). https://doi.org/10.1111/j.1751-1097.2006.tb09809.x
  15. M. Brenner and V. J. Hearing, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 84(3), 539 (2008). https://doi.org/10.1111/j.1751-1097.2007.00226.x
  16. R. Uchida, S. Ishikawa, and H. Tomoda, Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol, Acta. Pharm. Sin. B., 4(2), 141 (2014). https://doi.org/10.1016/j.apsb.2013.12.008
  17. M. R. Loizzo, R. Tundis, and F. Menichini, Natural and synthetic tyrosinase inhibitors as anti browning agents: an update, Compr. Rev. Food Sci. Food Saf., 11(4), 378 (2012). https://doi.org/10.1111/j.1541-4337.2012.00191.x
  18. K. Maeda and M. Fukuda, Arbutin: mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276(2), 765 (1996).
  19. Y. H. Jin, S. J. Lee, M. H. Chung, J. H. Park, Y. I. Park, T. H. Cho, and S. K. Lee, Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism, Arc. Pharm. Res., 22(3), 232 (1999). https://doi.org/10.1007/BF02976355
  20. J. Y. Lim, K. Ishiguro, and I. Kubo, Tyrosinase inhibitory p-coumaric acid from ginseng leaves, Phytother. Res., 13(5), 371 (1999). https://doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<371::AID-PTR453>3.0.CO;2-L
  21. S. M. An, J. S. Koh, and Y. C. Boo, p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB, Phytother. Res., 24(8), 1175 (2010). https://doi.org/10.1002/ptr.3095
  22. J. L. Shen, K. M. Man, P. H. Huang, W. C. Chen, D. C. Chen, Y. W. Cheng, P. L. Liu, M. C. Chou, and Y. H. Chen, Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders, Molecules., 15(9), 6452 (2010). https://doi.org/10.3390/molecules15096452
  23. J. Lee, E. Jung, J. Park, K. Jung, S. Lee, S. Hong, J. Park, E. Park, J. Kim, S. Park, and D. Park, Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-${\kappa}B$ activation signaling, Planta. Med., 71(4), 338 (2005). https://doi.org/10.1055/s-2005-864100
  24. G. Kaushik, S. Ramalingam, D. Subramaniam, P. Rangarajan, P. Protti, P. Rammamoorthy, S. Anant, and J. M. V. Mammen, Honokiol induces cytotoxic and cytostatic effects in malignant melanoma cancer cells, Am. J. Surg., 204(6), 868 (2012). https://doi.org/10.1016/j.amjsurg.2012.09.001
  25. N. H. Choi, G. J. Choi, B. S. Min, K. S. Jang, Y. H. Choi, M. S. Kang, M. S. Park, J. E. Choi, B. K. Bae, and J. C. Kim, Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi, J. Appl. Microbiol., 106(6), 2057 (2009). https://doi.org/10.1111/j.1365-2672.2009.04175.x
  26. Z. L. Kong, S. C. Tzeng, and Y. C. Liu, Cytotoxic neolignans: an SAR study, Bioorg. Med. Chem. Lett., 15(1), 163 (2005). https://doi.org/10.1016/j.bmcl.2004.10.011