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ABSTRACT: Hydrophobins are surface active proteins that are produced by filamentous fungi including mushrooms. Their ability
to self-assemble into an amphipathic membrane at any hydrophilic–hydrophobic interface is most intriguing. These small secreted
proteins comprise of eight conserved cysteine residues which form four disulfide bridges and an extraordinary hydrophobic patch.
Hydrophobins play critical roles in fungal (and/or mushrooms) growth as structural components and in the interaction of fungi and
mushrooms with the environment. The biophysical and biochemical properties of the isolated proteins are remarkable, such as
strong adhesion, high surface activity and the formation of various self-assembled structures. With the increasing demands of
hydrophobins from fungi and mushroom sources, production and purification in large scale is under challenge. Various
applications, ranging from food industries, cosmetics, nanotechnology, biosensors and electrodes, to biomaterials and
pharmaceuticals are emerging and a bright future is foreseen.
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Introduction

Hydrophobins are a large family of small cysteine-rich

proteins produced by filamentous fungi with a molecular

weight between 7 and 15 kDa (Chaplin and Kennedy,

1994; Scholtmeijer et al., 2001). They are extracellular

surface active proteins which fulfill a broad spectrum of

functions in fungal growth and development (Linder et

al., 2005; Stübner et al., 2010). Hydrophobins are

involved in formation of hydrophobic aerial structures

such as aerial hyphae, spores and fruiting bodies (e.g.

mushrooms or brackets) and mediating attachment of

hyphae to hydrophobic surfaces and signaling (Wösten

and de Vocht, 2000). These proteins are known for their

ability to assemble spontaneously into amphipathic

monolayers at hydrophobic–hydrophilic interfaces

(Bayry et al., 2012). The first hydrophobin genes were

discovered in Schizophyllum commune in 1991 (Wessels

et al., 1991). The name hydrophobin was originally used

due to their high content of hydrophobic amino acids

(Armenante, 2008).

Hydrophobins show very little sequence conservation

in general, apart from the presence of 8 cysteine

residues implicated in the formation of 4 disulfide

bridges (Kwan et al., 2006). Based on differences in

hydropathy patterns and biophysical properties, they can

be divided into two categories: class I and class II

(Sarlin et al., 2005). Class I hydrophobins are highly

insoluble in aqueous solution and can only be

dissociated by concentrated strong acids, e.g.

trifluoroacetic acid (TFA) and formic acid (Szilvay et

al., 2007; Linder, 2009). Class I monolayer contains the

same highly-ordered core structure known as rodlets,

and is positive to Congo red and thioflavin T (Morris et

al., 2012). Class II hydrophobins are soluble in aqueous

dilutions of organic solvents, e.g. ethanol (60%) or hot

sodium dodecyl sulfate (2% SDS) (Hektor and

Scholtmeijer, 2005; Lumsdon et al., 2005). Class II

monolayer lacks the rodlet morphology and is less stable

(Scholtmeijer et al., 2001). Class I hydrophobins have

been identified in both ascomycetes and basidiomycetes.

Until now, class II hydrophobins have been found in

ascomycetes only (Linder, 2009).
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The intriguing properties of hydrophobins provide

them with numerous potential applications and draw

significant interest to researchers. There are several

excellent previous reviews that explore earlier work

including hydrophobins structure, functional relations,

phylogeny and biological roles, bio-physical and

physicochemical characteristics, production and

purification, and proposed applications. Here we review

some of these recent studies and promote new

development involving detecting, isolation, production

and applications these valuable proteins.

Structure of hydrophobin

All hydrophobins share 8 conserved cysteine residues

and a few other residues (Khalesi et al., 2015).

However, class I hydrophobins comprise 100–125 amino

acids and can be glycosylated while class II

hydrophobins are shorter comprising 50–100 amino acid

residues (Hektor and Scholtmeijer, 2005). 

Hydrophobins are proteins having special spatial

arrangements of hydrophobic, hydrophilic and neutral

amino acids (Kisko, 2008). There are 4 disulfide bridges

formed between cysteine (1–6), (2–5), (3–4) and (7–8).

The hydrophobic part including two β-hairpins between

cysteine (3–4) and (7–8) is observed in tertiary structure

of both class I and II hydrophobins. And a hydrophilic

part which includes one α-helix between cysteine (4–5)

is present in class II hydrophobins only but not class I

hydrophobins (Kallio et al., 2007; Linder, 2009).

Crystallization of HFBII, class II member, from

Trichoderma reesei has revealed three dimensional

structure at 1 Å resolution with globular shape of 2 nm

in diameter (Hakanpää et al., 2004). The two β-hairpins

connect and interlock with each other to form one anti-

parallel β-sheet which further forms a barrel-like

structure, called as “the hydrophobic patch”. NMR

studies of the class I hydrophobin EAS from

Neurospora crassa and SC3 of S. commune suggested

similar disulfide bridging pattern as HFBII, but with

more diversity (Wang et al., 2004; Kwan et al., 2008)

The disulfide bridges seem essential for hydrophobins

structure, although class I hydrophobins retain their

functionality even after reduction and blocking of

disulfides (De Vocht et al., 2000).

A database search confirmed that class II

hydrophobins only exist in ascomycetes with a uniform

group in the phylogenetic tree (Linder et al., 2005). It

was speculated that class II hydrophobins have evolved

independently of class I hydrophobins and thus represent

a case of convergent evolution (Whiteford and Spanu,

2002). Class I hydrophobins can be divided into two

sub-groups Ia and Ib representing hydrophobins of

ascomycetes and basidiomycetes, respectively. Class Ia

hydrophobins from ascomycetes show high divergence

with more sequence variation and a wider distribution of

sequence lengths. The overall hydrophobicity of most

class Ib hydrophobins is higher than in class Ia and II at

a grand average of 60% for hydropathy (GRAVY)

(Linder et al., 2005).

Properties of hydrophobin

Hydrophobins have been reported as the most surface

active proteins discovered thus far (Cooper and

Kennedy, 2010). The most intrinsic property of

hydrophobins is the self-assembled amphipathic

membranes at hydrophobic–hydrophilic surfaces and

interfaces (Linder, 2009). These tough, ordered and

robust membranes are crystalline and viscoelastic which

are important for aerial growth of fungi (Kallio et al.,

2007). Surface membranes on the air–water interface are

monolayers for class II hydrophobins but mono/

multilayers for class I (Garbe et al., 2009).

The capability to form rodlets at the air–water

interface is one of the early observations that were made

for class I hydrophobins (Wessels, 1994). Rodlets show

interesting analogies with amyloid fibres. Langmuir

trough of HGFI from Grifola frondosa and hydrophobin

from Pleurotus ostreatus indicated the rodlets formed at

the air–water interface during compression of a surface

film through a bilayer intermediate (Yu et al., 2008;

Houmadi et al., 2008).

Another unique property of hydrophobins is their

tendency to form very stable foams due to the high

surface elasticity of membranes (Wang et al., 2005). The

foaming tendency may be stronger for class II

hydrophobins than for class I. Foams and bubble

stability of HFBII was found stable for at least 4

months, and even up to several years in some cases at

relatively low concentration of 0.1 wt% (Cox et al.,

2009).

The foaming ability of hydrophobins also leads to a

negative aspect of gushing in carbonated beverages,

especially beer. The main gushing component was

isolated as Class II hydrophobin of Fusarium culmorum
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which occurred in Fusarium infection of barley (Sarlin

et al., 2005). The fungi Fusarium, Nigrospra and

Trichoderma are the most active producers of

hydrophobins observed in carbonated beverages and

caused gushing.

The capability of hydrophobins to adhere to various

surfaces can be applied as surfactants and emulsifiers

(Lumsdon et al., 2005). All hydrophobins coat surfaces

and so lower the surface tension, but there is a

difference in the binding characteristics (Askolin et al.,

2006). While class I members can be made to adhere

very strongly, this is not seen for class II members

which dissociate more easily. It’s interesting that much

lower amount of hydrophobins needed to reach a

specific low surface tension compared to other smaller

molecular-weight surfactants (Lumsdon et al., 2005).

Toxicity and immunological properties

Hydrophobins are not toxic nor cytotoxic or

immunogenic for humans upon consumption of

mushrooms. It has been suggested (Wösten, 2001) and

later confirmed (Aimanianda et al., 2009) that by

covering fungal aerial structures, hydrophobins shield

antigens in the cell wall, thereby protecting the fungal

structure against the immune system.

The surface rodlet-layer has a critical role in masking

the immunogenicity of airborne fungal spores

(Aimanianda et al., 2009). By covering the spore

surface, the rodlet-layer imparts immunological inertness

to the spores and ensures that pathogen-associated

molecular patterns (PAMPs) are not recognized by

innate and adaptive immune cells, thus preventing the

activation of host immune system, inflammation, and

tissue damage. Several lines of evidence suggest that the

rodlet-layer, which covers the spores of both pathogenic

and nonpathogenic fungal species, prevents immune

recognition (Bruns et al., 2010; Dagenais et al., 2010).

Production of hydrophobins

Since hydrophobins are available only in milligrams

from natural sources, the increasing demands have to be

addressed by the large-scale recombinant production

(Khalesi et al., 2014). Various fungal and bacterial hosts

were examined to get functional hydrophobins at a

reasonable level. Though hydrophobins are derived from

filamentous fungi, E. coli was considered for its high

and rapid expression. Class I hydrophobin Hyd2 from

entomopathogenic fungus Beauveria bassiana was

successfully expressed in E. coli inclusion bodies at 7–

10 mg/L (Kirkland and Keyhani, 2010). However, N-

terminal modifications of Hyd2 with a fusion partner of

chitin-binding domain–intein were required for proper

expression and purification. And extra cleavage of intein

was needed to obtain proper hydrophobin.

More efficient production of homologous expressed

class II hydrophobin HFBI in T. reesei was reported at

levels up to 600 mg/L, whereas heterogeneous

production of class I hydrophobin SC3 from S.

commune in T. reesei was 60 mg/L (Askolin et al.,

2001; Scholtmeijer et al., 2005). Another class I

hydrophobin DewA from Aspergillus nidulans was also

expressed in T. reesei using HFB2 promoter and lactose

as carbon source at 33 mg/L (Schmoll et al., 2010).

Homologous overproduction of SC3 in S. commune was

hampered by gene silencing and occurrence of THN

mutation. When more than one extra copy of SC3 gene

is introduced into S. commune, silencing of the gene

takes place through methylation of the coding DNA,

which causes SC3 production to cease (Schuurs et al.,

1997). 

Pichia pastoris is widely employed as an expression

system for the production of various hydrophobins.

HFBI was heterologously expressed in P. pastoris to

120 mg/L using pPIC9 vector under the control of

AOX1 promoter (Niu et al., 2012). Both class II

hydrophobin FcHyd5p and class I FcHyd3p from F.

culmorum were heterologously expressed by P. pastoris

with similar property as their native hydrophobins

(Stübner et al., 2010; Lutterschmid et al., 2011). Class I

hydrophobin HGFI from G. frondosa was also acquired

in P. pastoris at 90 mg/L (Wang et al., 2010). Class I

hydrophobin RodA and RodB from A. fumigatus were

produced by a fed-batch fermentation at 200–300 mg/L

(Pedersen et al., 2011). Both rRodA and rRodB

converted a glass surface from hydrophilic to

hydrophobic similar to native RodA, but only rRodB

was able to decrease the hydrophobicity of a Teflon-like

surface to the same extent as native RodA.

Although efforts to overcome the limitations in

overproduction of class I hydrophobins have not yet

produced satisfactory results as class II, attempts to

optimize the purification are promising.



4 Yuanzheng Wu, Jishun Li, Hetong Yang, and Hyun-Jae Shin

Characterization of hydrophobins

Most common characterization methods for

hydrophobins are water contact angle (WCA)

measurement and atomic force microscopy (AFM)

image (Scholtmeijer, 2000). The coating of surfaces of

mica sheets and siliconized glass by hydrophobins can

result in different WCA with dramatic increment on

mica surface but reduction on siliconized glass surface.

AFM is effective in distinguishing class I hydrophobins

rodlets with class II rods, needles and fibrils. 

The emulsifying capacity of hydrophobins can be

investigated and compared with the typical food

emulsifier (e.g., sodium caseinate) using soy oil

emulsion (Niu et al., 2012). Class II hydrophobins have

higher emulsifying activity and longer stabilizing period

of oil droplets than class I hydrophobins. Coating

experiments on microtiter plate surface and determined

by inorganic dye (e.g., Ponceau S) can also confirm the

adhesion effect of hydrophobins (Kottmeier et al.,

2012). The surface pressure measurement using a film

balance can demonstrate the film formation by

hydrophobins and subsequent surface pressure increase.

Applications

As hydrophobins have unique and remarkable

properties and various biological roles, their application

possibilities are also diverse and some even rather

surprising. Based on the amphiphilic nature and self-

assembly properties, the proposed applications of

hydrophobins include biosurfactants, emulsifiers, surface

coating and immobilization range from food industries,

cosmetics, nanotechnology, biosensors and electrodes, to

biomaterials and pharmaceuticals, and even as indicators

for beer gushing.

Hydrophobins have become outstanding candidates for

surface active components in food industries for their

non-toxicity nor cytotoxicity or immunogenicity

especially the ones derived from mushrooms (Murray et

al., 2009). They can stabilize oil droplets or serve as

emulsifiers in food processing, liposome applications

and oil refining (Linder et al., 2002). Hydrophobins are

expected for long terms stabilization of different phases

in food products, e.g. to stabilize the dispersed air

bubbles in ice cream. They can also modify hydrophilic

and hydrophobic surfaces (glass and Teflon, respectively)

(Tchuenbou-Magaia et al., 2009). SC3 has an influence

on DOPC/DOPE liposomes but does not destabilize

DPPC liposome.

The amphipathic nature of hydrophobins can also be

exploited in separation technologies. Fusion of the goal

protein to hydrophobins has been utilized in purification

by aqueous two-phase systems (ATPS) (Linder et al.,

2004). Class II hydrophobins display high separation

behavior in ATPS. HFBI was used as a tag to cellulose

endoglucanase I (EGI) and EGIcore-HFBI fusion

method proved to be a cheap, easy and efficient way to

purify EGI (Collen et al., 2002). Based on the efficient

assembly, hydrophobin fusions can be used for

immobilization of enzymes and antibodies. The

immobilization of lipase onto P. ostreatus hydrophobins

led to high lipase activity and thermal stability (Palomo

et al., 2003). Immobilization of flavor compounds can

be another aspect to keep the aroma in food and

beverages for longer time.

Hydrophobins coating on biosensors and electrodes

can be decrease the hydrophobicity and thus inhibit the

denaturation and preserve long-time activity. Multi-wall

carbon nanotubes (MWNTs) were coated by HFBI using

a novel non-covalent approach (Wang et al., 2010).

HFBI–MWNTs nanocomposites displayed high sensitivity,

wide linear range, low detection limit, and fast response

for glucose detection. The Pisolithus tinctorius

hydrophobin HYDPt-1–coated electrodes were stable in

a wide range of pH, and effectively blocked the

oxidation of electrode substrates and the access of

hydrophilic electroactive probes to electrode surface

(Bilewicz et al., 2001). Class I hydrophobins from P.

ostreatus were stable in KOH and thus coated on a

silicon to protect it from etching with KOH and

passivate optical devices (De Stefano et al., 2007).

Hydrophobins are promising in enhancing the

biocompatibility of medical implants without eliciting

immunogenic reactions (Hektor and Scholtmeijer, 2005).

SC3-coated polymers such as polystyrene by spin

coating or direct deposition showed a bumpy structure

and 70–80% reduction in friction coefficient compared

to untreated surface which can be used for personal care

and biomedical applications (e.g., catheters) (Misra et

al., 2006). The self-assembly property of hydrophobins

allows them to be used in formulations of water

insoluble drugs for oral administration (Valo et al.,

2010). The addition of SC3 to hydrophobic drug

suspension of cyclosporine A and nifedipine increased

their bioavailability two and six folds, respectively
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(Haas Jimoh Akanbi et al., 2010).

Class II hydrophobins have also been used to

stimulate cell growth on solid surfaces (Hou et al.,

2008). A coating with HFBI was employed to adhere

collagen to the hydrophobic surface of PDMS. The layer

of HFBI–collagen helps the adhesion and the growth of

human embryonic kidney cells while HFBI–serum layer

promoted growth of neural stem cells on micro-domains

(Li et al., 2009).

The assembly of hydrophobins at the interface

between hydrophobic and hydrophilic liquids can

stabilize emulsions (Vic, 2003). Hydrophobins can be

used to stabilize emulsions in creams and ointments.

They can prolong the residence time of shampoo by

surviving several washes and thus be a good additive to

hair care products.

Although the stabilization of foam by hydrophobin can

be used in certain positive applications, it may also

cause problems in beer brewing and sparkling wines

production (Khalesi et al., 2012). The presence of too

many hydrophobins in beer can provoke ‘gushing’ of

the beverage. Several methods have been developed to

trace the gushing factors either in barley or malting

(Shokribousjein et al., 2011).

Summary and future aspect

The extraordinary properties of hydrophobins offer

numerous possibilities for applications in science and

technology. Research over the past few years has

improved our understanding of the self-assembly process

of hydrophobins. However, currently there is no mature

product on the market to fulfill proposed applications

yet. Thus it’s critical to develop production technologies

for commercial success of hydrophobins. Molecular

engineering of hydrophobins with fusion proteins can

give endless variations of functionality. With the

importance of surface phenomena in technical

applications, the utilization of hydrophobins are

tremendous. Also as the building of self-assembled

materials, hydrophobins hold bright promise in

nanotechnology. Molecular aspects of mushroom

technology should contribute to hydrophobin research.
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