DOI QR코드

DOI QR Code

Lipopolysaccride 감염처리가 닭의 품종간 스트레스연관 유전자 발현에 미치는 영향

Effects of Lipopolysaccride-induced Stressor on the Expression of Stress-related Genes in Two Breeds of Chickens

  • 장인석 (경남과학기술대학교 동물생명과학과) ;
  • 손시환 (경남과학기술대학교 동물생명과학과) ;
  • 문양수 (경남과학기술대학교 동물생명과학과)
  • Jang, In Surk (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Sohn, Sea Hwan (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Moon, Yang Soo (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology)
  • 투고 : 2016.11.29
  • 심사 : 2017.02.13
  • 발행 : 2017.03.31

초록

본 연구는 한국재래계(KNC)와 백색레그혼(WLH)에서 lipopolysaccharide(LPS)감염 스트레스가 닭의 품종간 스트레스 연관 유전자들의 발현에 미치는 영향을 비교 분석하고자 실시되었다. 공시계를 대상으로 생리식염수(대조구)와 LPS(처리구)를 복강에 투여한 후, 시간(0, 48 hr) 및 처리별 각 개체로부터 간 조직을 취하고, microarray 및 quantitative RT-PCR(qRT-PCR) 분석을 하였다. 처리에 따른 유전자 발현차이를 보면, KNC(대조구)와 KNC에 LPS를 처리한 경우(KNC-LPS)를 비교한 결과, 대조구 대비 2배 이상 유전자의 발현이 증가한 유전자의 수는 1,044개, 발현이 감소한 유전자의 수는 1,000개였다. WLH(대조구)를 WLH-LPS와 비교한 경우, 유전자의 발현이 증가한 유전자의 수는 1,193개, 발현이 감소한 유전자의 수는 1,072개였다. LPS 처리에 따른 스트레스 연관 유전자들의 microarray 발현에서 스트레스연관 유전자들의 발현은 두 품종 모두에서 감소하였으며, 품종 간 차이는 없는 것으로 나타났다. Microarray의 결과를 바탕으로 HSP90, HMGCR, ATF4, SREBP1, XBP1 등의 유전자 발현을 qRT-PCR을 이용하여 검증한 결과, 대조구와 LPS 감염구 간에 유의적 차이를 나타내었다(P<0.05). 세포 수준의 스트레스(ER 스트레스)에서 ATF4, XBP1, SREBP1은 화이트레그혼에서 microarray와 qRT-PCR에서와 같이 이들 유전자들의 발현이 억제되는 것을 보여주었다. 그러나 한국 재래계에서는 ATF4를 제외한 유전자들은 LPS에 의해 영향을 받지 않거나(XBP1), 오히려 증가(SREBP)하는 양상을 보였다. ER-stress 연관 유전자들의 발현 양상으로 볼 때, KNC이 WLH에 비하여 LPS 감염에 더 민감하게 반응하는 것으로 보인다. HMGCR은 두 품종간에 LPS에 의한 상호작용이 없는 것으로 보아, HMGCR 발현에 의한 감염 차이점을 찾을 수 없었다. 한국재래계에서 HSP70은 LPS 처리 후에 대조구에 비하여 약 2.5배 이상 높은 발현을 보였으나, 백색 레그혼에서는 낮은 발현 양상을 나타내었다. 스트레스 지표 유전자들의 종류뿐만 아니라, 스트레스 종류(예: 환경스트레스, 감염스트레스)에 따라 유전자들의 발현 반응에 차이가 있음을 보여주었다. LPS 감염스트레스에 따른 스트레스연관 유전자 발현연구는 닭의 품종별 질병 저항성 및 동물복지 관련 지표의 탐색에 기여할 것으로 사료된다.

The objective of the present study was to determine the expression of genes associated with lipopolysaccharide (LPS)-induced stressor in two breeds of chickens: the Korean native chicken (KNC) and the White Leghorn chicken (WLH). Forty chickens per breed, aged 40 weeks, were randomly allotted to the control (CON, administered the saline vehicle) and LPS-injected stress groups. Samples were collected at 0 and 48 h post-LPS injection, and total RNA was extracted from the chicken livers for RNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. In response to LPS, 1,044 and 1,193 genes were upregulated, and 1,000 and 1,072 genes were downregulated in the KNC and WLH, respectively, using a ${\geq}2$-fold cutoff change. A functional network analysis revealed that stress-related genes were downregulated in both KNC and WLH after LPS infection. The results obtained from the qRT-PCR analysis of mRNA expression of heat shock 90 (HSP90), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), activating transcription factor 4 (ATF4), sterol regulatory element-binding protein 1 (SREBP1), and X-box binding protein 1 (XBP1) were confirmed by the results of the microarray analysis. There was a significant difference in the expression of stress-associated genes between the control and LPS-injected KNC and WLH groups. The qRT-PCR analysis revealed that the stress-related $HSP90{\alpha}$ and HMGCR genes were downregulated in both LPS-injected KNC and WLH groups. However, the HSP70 and $HSP90{\beta}$ genes were upregulated only in the LPS-injected KNC group. The results suggest that the mRNA expression of stress-related genes is differentially affected by LPS stimulation, and some of the responses varied with the chicken breed. A better understanding of the LPS-induced infective stressors in chicken using the qRT-PCR and RNA microarray analyses may contribute to improving animal welfare and husbandry practices.

키워드

참고문헌

  1. An YS, Park JG, Jang IS, Sohn SH, Moon YS 2012 Effects of high stocking density on the expressions of stress and lipid metabolism associated genes in the liver of chicken. Journal of Life Science 22(12):1672-1679. https://doi.org/10.5352/JLS.2012.22.12.1672
  2. Barnett JL, Hemsworth PH 2003 Science and its application in assessing the welfare of laying hens in the egg industry. Aust Vet J 81(10):615-624.
  3. Beloor J, Kang HK, Kim YJ, Subramani VK, Jang IS, Sohn SH, Moon YS 2010 The effect of stocking density on stress related genes and telomeric broiler chickens. Asian-Aust J Anim Sci 23:437-443. https://doi.org/10.5713/ajas.2010.90400
  4. Cheng HW, Freire R, Pajor EA 2004 Endotoxin stress responses in chickens from different genetic lines. 1. Sickness, behavioral, and physical responses. Poult Sci 83(5):707-715. https://doi.org/10.1093/ps/83.5.707
  5. Heckert RA, Estevez I, Russek-Cohen E, Pettit-Riley R 2002 Effects of density and perch availability on the immune status of broilers. Poult Sci 81(4):451-457. https://doi.org/10.1093/ps/81.4.451
  6. Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JP 2013 Unique features of chicken Toll-like receptors. Dev Comp Immunol 41(3):316-323.
  7. Kobori M, Yoshida M, Ohnishi-Kameyama M, Shinmoto H 2007 Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol 150(2):209-219. https://doi.org/10.1038/sj.bjp.0706972
  8. Kogut MH, Iqbal M, He H, Philbin V, Kaiser P, Smith A 2005 Expression and function of Toll-like receptors in chicken heterophils. Dev Comp Immunol 29:791-807. https://doi.org/10.1016/j.dci.2005.02.002
  9. Kogut MH, Klasing K 2009 An immunologist's perspective on nutrition, immunity, and infectious diseases: Introduction and overview. J Appl Poult Res 18:103-110. https://doi.org/10.3382/japr.2008-00080
  10. Leshchinsky TV, Klasing KC 2003 Profile of chicken cytokines induced by lipopolysaccharide is modulated by dietary ${\alpha}$-tocopheryl acetate. Poult Sci 82:1266-1273. https://doi.org/10.1093/ps/82.8.1266
  11. Leshchinsky TV, Klasing KC 2001 Divergence of the inflammatory response in two types of chickens. Dev Comp Immunol 25(7):629-638. https://doi.org/10.1016/S0145-305X(01)00023-4
  12. Lillehoj HS, Chai JY 1988 Comparative natural killer cell activities of thymic, bursal, splenic and intestinal intraepithelial lymphocytes of chickens. Dev Comp Immunol 12(3):629-643. https://doi.org/10.1016/0145-305X(88)90079-1
  13. Livak KJ, Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  14. Madelin TM, Wathes CM 1989 Air hygiene in a broiler house: comparison of deep litter with raised netting floors. Br Poult Sci 30(1):23-37. https://doi.org/10.1080/00071668908417122
  15. McCarthy JV, Ni J, Dixit VM 1998 RIP2 is a novel NFkappaB- activating and cell death-inducing kinase. J Biol Chem 273(27):16968-16975. https://doi.org/10.1074/jbc.273.27.16968
  16. Miller L, Qureshi MA 1992 Comparison of heat-shockinduced and lipopolysaccharide-induced protein changes and tumoricidal activity in a chicken mononuclear cell line. Poult Sci 71(6):979-987. https://doi.org/10.3382/ps.0710979
  17. Miyake A, Murata Y, Okazawa H, Ikeda H, Niwayama Y, Ohnishi H, Hirata Y, Matozaki T 2008 Negative regulation by SHPS-1 of Toll-like receptor-dependent proinflammatory cytokine production in macrophages. Genes Cells 13(2):209-219. https://doi.org/10.1111/j.1365-2443.2007.01161.x
  18. Ozoe A, Isobe N, Yoshimura Y 2009 Expression of Toll-like receptors (TLRs) and TLR4 response to lipopolysaccharide in hen oviduct. Vet Immunol Immunopathol 127:259-268. https://doi.org/10.1016/j.vetimm.2008.10.325
  19. Redmond SB, Tell RM, Coble D, Mueller C, Palic D, Andreasen CB, Lamont SJ. 2010 Differential splenic cytokine responses to dietary immune modulation by diverse chicken lines. Poult Sci 89(8):1635-1641. https://doi.org/10.3382/ps.2010-00846
  20. Renli Q, Chao S, Jun Y, Chan S, Yunfei X 2012 Changes in fat metabolism of black-bone chickens during early stages of infection with Newcastle disease virus. Animal 6(8):1246-1252. https://doi.org/10.1017/S1751731112000365
  21. Roach J, Glusman G, Rowen L, Kaur A, Purcell M, Smith K, Hood L, Aderem A 2005 The evolution of vertebrate Toll-like receptors. PNAS 102(27):9577-9582. https://doi.org/10.1073/pnas.0502272102
  22. Schild H, Rammensee HG 2000 gp96-the immune system's Swiss army knife. Nat Immunol 1(2):100-101. Review. https://doi.org/10.1038/77770
  23. Shini S, Kaiser P, Shini A, Bryden WL 2008 Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp Biochem Physiol B Biochem Mol Biol 149(2):324-333. https://doi.org/10.1016/j.cbpb.2007.10.003
  24. Sohn SH, Cho EJ, Park DB, Jang IS, Moon YS 2014 Comparison of stress response between Korean native chickens and Single Comb White Leghorns subjected to a high stocking density. Korean J. Poult Sci 41(2):115-125. https://doi.org/10.5536/KJPS.2014.41.2.115
  25. Sohn SH, Subramani VK, Moon YS, Jang IS 2012 Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens. Poult Sci 91(4):829-836. https://doi.org/10.3382/ps.2011-01904
  26. Wainberg Z, Oliveira M, Lerner S, Tao Y, Brenner BG 1997 Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology 233(2):364-373. https://doi.org/10.1006/viro.1997.8618
  27. Wang W, Wideman RF Jr, Chapman ME, Bersi TK, Erf GF 2003 Effect of intravenous endotoxin on blood cell profiles of broilers housed in cages and floor litter environments. Poult Sci 82(12):1886-1897. https://doi.org/10.1093/ps/82.12.1886
  28. Zucker BA, Müller W. 2000 Investigations on airborne microorganisms in animal stables. 3: Relationship between inhalable endotoxin, inhalable dust and airborne bacteria in a hen house]. Berl Munch Tierarztl Wochenschr 113(7-8):279-283. German.