참고문헌
- Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
- Aqil, M., Kita, I., Yano, A., & Soichi, N. (2006). Decision support system for flood crisis management using artificial neural network. International Journal of Intelligent Technology, 1(1), 70-76.
- Atkinson, P. M., Cutler, M. E. J., & Lewis, H. (1997). Mapping sub-pixel proportional land cover with AVHRR imagery. International Journal of Remote Sensing, 18(4), 917-935. https://doi.org/10.1080/014311697218836
- Atkinson, P. M., & Tatnall, A. R. L. (1997). Introduction neural networks in remote sensing. International Journal of remote sensing, 18(4), 699-709. https://doi.org/10.1080/014311697218700
- Bastin, L. (1997). Comparison of fuzzy c-means classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 18(17), 3629-3648. https://doi.org/10.1080/014311697216847
- Chattopadhyay, S., Pratihar, D. K., & De Sarkar, S. C. (2011). A comparative study of fuzzy c-means algorithm and entropy-based fuzzy clustering algorithms. Computing and Informatics, 30(4), 701-720.
- Chawla, S. (2010). Possibilistic c-means-spatial contextual information based sub-pixel classification approach for multi-spectral data. University of Twente Faculty of Geo-Information and Earth Observation (ITC), Enschede.
- Debojit, B. J. H., Arora Manoj, K., & Balasubramanian, R. (2011). Study and implementation of a non-linear support vector machine classifier. International Journal of Earth Sciences and Engineering ISSN, 0974-5904.
- De Jong, S. M., & Van der Meer, F. D. (Eds.). (2007). Remote sensing image analysis: including the spatial domain. Springer Science & Business Media.
- Follador, M., Villa, N., Paegelow, M., Renno, F., & Bruno, R. (2008). Tropical deforestation modelling: comparative analysis of different predictive approaches. The case study of Peten, Guatemala. In Modelling Environmental Dynamics (pp. 77-107). Springer Berlin Heidelberg.
- Foody, G. M. (1995a). Land cover classification by an artificial neural network with ancillary information. International Journal of Geographical Information Systems, 9(5), 527-542. https://doi.org/10.1080/02693799508902054
- Foody, G. M. (1995b). Using prior knowledge in artificial neural network classification with a minimal training set. Remote Sensing, 16(2), 301-312. https://doi.org/10.1080/01431169508954396
- Foody, G. M. (2001). Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches. Journal of Geographical Systems, 3(3), 217-232. https://doi.org/10.1007/PL00011477
- Foody, G. M., & Cutler, M. E. (2006). Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecological modelling, 195(1), 37-42. https://doi.org/10.1016/j.ecolmodel.2005.11.007
- Ganchimeg, G. (2015). History document image background noise and removal methods. International Journal of Knowledge Content Development & Technology, 5(2), 11-24. https://doi.org/10.5865/IJKCT.2015.5.2.011
- Gong, P., Pu, R., & Chen, J. (1996). Mapping ecological land systems and classification uncertainties from digital elevation and forest-cover data using neural networks. P. E. & R. S., 62(11), 1249-1260.
- Gong, Z., Thill, J. C., & Liu, W. (2015). ART-P-MAP neural networks modeling of land-use Change: accounting for spatial heterogeneity and uncertainty. Geographical Analysis, 47(4), 376-409. https://doi.org/10.1111/gean.12077
- Grekousis, G., Mountrakis, G., & Kavouras, M. (2016). Linking MODIS-derived forest and cropland land cover 2011 estimations to socioeconomic and environmental indicators for the European Union's 28 countries. GIScience & Remote Sensing, 53(1), 122-146. https://doi.org/10.1080/15481603.2015.1118977
- Grekousis, G., Mountrakis, G., & Kavouras, M. (2015). An overview of 21 global and 43 regional land-cover mapping products. International Journal of Remote Sensing, 36(21), 5309-5335. https://doi.org/10.1080/01431161.2015.1093195
- Grekousis, G., & Photis, Y. N. (2014). Analyzing high-risk emergency areas with GIS and neural networks: The case of Athens, Greece. The Professional Geographer, 66(1), 124-137. https://doi.org/10.1080/00330124.2013.765300
- Grover, N. (2014). A study of various fuzzy clustering algorithms. International Journal of Engineering Research (IJER), 3(3), 177-181. https://doi.org/10.17950/ijer/v3s3/310
- Hepner, G. F., Logan, T., Ritter, N., & Bryant, N. (1990). Artificial neural network classification using a minimal training set. Comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56(4), 469-473.
- Hsu, K. C., & Li, S. T. (2010). Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network. Advances in Water Resources, 33(2), 190-200. https://doi.org/10.1016/j.advwatres.2009.11.005
- Huang, W. Y., & Lippmann, R. P. (1987, June). Comparisons between neural net and conventional classifiers. In IEEE first international conference on neural networks (Vol. 4, pp. 485-493).
- Jarvis, C. H., & Stuart, N. (1996). The sensitivity of a neural network for classifying remotely sensed imagery. Computers & Geosciences, 22(9), 959-967. https://doi.org/10.1016/S0098-3004(96)00034-9
- Kavzoglu, T. (2009). Increasing the accuracy of neural network classification using refined training data. Environmental Modelling & Software, 24(7), 850-858. https://doi.org/10.1016/j.envsoft.2008.11.012
- Krishnapuram, R., & Keller, J. M. (1996). The possibilistic c-means algorithm: insights and recommendations. IEEE transactions on Fuzzy Systems, 4(3), 385-393. https://doi.org/10.1109/91.531779
- Krishnapuram, R., & Keller, J. M. (1993). A possibilistic approach to clustering. IEEE transactions on fuzzy systems, 1(2), 98-110. https://doi.org/10.1109/91.227387
- Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465-3472.
- Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. John Wiley & Sons.
- Lucas, J., Freeberg, T., Krishnan, A., & Long, G. (2002). A comparative study of avian auditory brainstem responses: correlations with phylogeny and vocal complexity, and seasonal effects. Journal of Comparative Physiology A, 188(11-12), 981-992. https://doi.org/10.1007/s00359-002-0359-x
- Mather, P. M. (1999). Computer processing of remotely-sensed images: an introduction. John Wiley & Sons.
- Mather, P., & Tso, B. (2009). Classification methods for remotely sensed data (pp. 221-252). Boca Raton: CRC press.
- Mas, J. F., & Flores, J. J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617-663. https://doi.org/10.1080/01431160701352154
- Ndehedehe, C., Ekpa, A., Simeon, O., & Nse, O. (2013). Understanding the neural network technique for classification of remote sensing data sets. NY Sci J, 6, 26-33.
- Paola, J. D., & Schowengerdt, R. A. (1995). A review and analysis of back propagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of remote sensing, 16(16), 3033-3058. https://doi.org/10.1080/01431169508954607
- Photis, Y. N., & Grekousis, G. (2012). Locational planning for emergency management and response: An artificial intelligence approach. International Journal of Sustainable Development and Planning, 7(3), 372-384. https://doi.org/10.2495/SDP-V7-N3-372-384
- Pratola, C., Del Frate, F., Schiavon, G., Solimini, D., & Licciardi, G. (2011, April). Characterizing land cover from X-band COSMO-SkyMed images by neural networks. In Urban Remote Sensing Event (JURSE), 2011 Joint (pp. 49-52). IEEE.
- Suganya, R., & Shanthi, R. (2012). Fuzzy c-means algorithm-a review. International Journal of Scientific and Research Publications, 2(11), 1.
- Stathakis D., & Vasilakos, A. (2006). Satellite image classification using granular neural networks. International Journal of Remote Sensing, 27(18), 3991-4003. https://doi.org/10.1080/01431160600567779
- Thomas, B., & Nashipudimath, M. (2012). Comparative analysis of fuzzy custering algorithms in data mining. International Journal of Advanced Research in Computer Science and Electronics Engineering, 1(7), pp-221.
- Velmurugan, T. (2012). Performance comparison between k-means and fuzzy c-means algorithms using arbitrary data points. Wulfenia Journal, 19(8), 234-241.
- Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of plant ecology, 1(1), 9-23. https://doi.org/10.1093/jpe/rtm005