DOI QR코드

DOI QR Code

Sterilization and ecofriendly neutralization of seawater using electrolysis

전기분해에 의한 해수살균 및 친환경 중화에 관한 연구

  • Yang, Jeong-Hyeon (Department of Mechanical system engineering, Gyeongsang National University) ;
  • Choi, Jong-Beom (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Yun, Yong-Sup (Department of Marine System Engineering, Korea Maritime and Ocean University)
  • Received : 2017.01.26
  • Accepted : 2017.02.09
  • Published : 2017.03.31

Abstract

In this study, we investigated the effect of sterilization and the neutralization of treated ballast water using seawater electrolysis. The electrolysis apparatus has a cation-selective membrane for passing the cation and a titanium electrode in each cell. We examined the sterilization effect after an incubation period of 24 hr. The oxidation reaction during electrolysis caused, the solution to become strongly acidic due to the generation of a hydroxyl group, and the oxidation reduction potentials(ORP) was increased to 800 - 1200mV. After the reduction reaction, the solution became alkaline(pH 9 - 12), and ORP was decreased to - 900 - - 750 mV. It might be possible to control the pH of ballast water through electrolysis. In addition, we demonstrated the effects of sterilization of ballast water containing generated hypochlorous acid using electrolysis under high ORP condition.

본 연구에서는 선박 평형수 처리를 위하여 전기분해 방법을 이용한 살균 효과 및 전해 환원법에 의한 용액 중화에 대해 규명하고자 한다. 전기분해 장치에는 양이온만 선택적으로 통과시키기 위하여 분리막을 설치하였으며, 양극과 음극에는 티타늄 불용성 전극을 사용하였다. 전기분해후 살균처리 효과에 대한 분석은 인큐베이터 안에서 24시간 배양 후 관찰하였다. 전기분해 양극반응의 경우, 각 용액에서 수산기의 발생으로 강한 산성을 나타내었으며, 산화환원전위는 800 ~ 1200 mV까지 증가하였다. 음극반응에서는 pH 9 ~ 12로 알칼리 분위기를 나타내었으며, 산화환원전위는 -900 ~ -750 mV까지 감소하였다. 이를 통하여 양 음극반응을 통하여 선박평형수의 pH 조절이 가능한 것을 확인 할 수 있었다. 또한, 전기분해에 의해 생성된 차아염소산에 의한 살균 작용과 높은 산화환원전위 환경에서 우수한 살균효과를 나타내는 것을 확인할 수 있었다.

Keywords

References

  1. D. Pughiuc, "Invasive species : Ballast water battles, Seaways," March, pp. 5-7, 2010.
  2. S. G. Cheon, D. W. Park, and G. S. Kil, "Development of an ultra-violet lamp and a ballast for ship's ballast water treatment," Journal of the Korean Society for Marine Engineering, vol. 35, no. 5, pp. 675-681, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.5.675
  3. Lloyd's Register, Ballast Water Treatment Technologies and Current System Availability, London, pp. 3-13, 2012.
  4. Lloyd's Register, Understanding Ballast Water Management, 3rd ed., London, United Kingdom, pp. 4-19, 2016.
  5. E. C. Kim, J. H. Oh, and S. G. Lee, "Consideration on the concentration of the active substances produced by the ballast water treatment system," Journal of the Korean Society for Marine Environmental & Energy, vol. 15, no. 3, pp. 219-226, 2012. https://doi.org/10.7846/JKOSMEE.2012.15.3.219
  6. K. Kumon, "What is functional water?," Artificial Organs, vol. 21, no. 1, pp. 2-4, 1997. https://doi.org/10.1111/j.1525-1594.1997.tb00688.x
  7. S. Y. Hsu, "Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water", Journal of Food Engineering, vol. 66, no.2, pp. 171-176, 2005. https://doi.org/10.1016/j.jfoodeng.2004.03.003
  8. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., New Jersey, USA : Prentice Hall, 1996.
  9. L. B. Liao, W. M. Chen, and X. M. Xiao, "The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water," Journal of Food Engineering, vol. 78, no. 4, pp. 1326-1332, 2007. https://doi.org/10.1016/j.jfoodeng.2006.01.004
  10. P. G. Robbs, J. A. Bartz, J. K. Brecht, and S. A. Sargent, "Oxidation-reduction potential of chlorine solutions and their toxicity to Erwinia carotovora subsp. carotovora and Geotrichum candidum," Plant Disease, vol. 79, no. 2, pp. 158-162, 1995. https://doi.org/10.1094/PD-79-0158
  11. H. Kiura, K. Sano, S. Morimatsu, T. Nakano, C. Morita, M. Yamaguchi, T. Maeda, and Y. Katsuoka, "Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration," Journal of Microbiological Methods, vol. 49, no. 3, pp. 285-293, 2002. https://doi.org/10.1016/S0167-7012(01)00385-2
  12. T. V. Suslow, Oxidation-reduction potential (ORP) for water disinfection monitoring, control, and documentation, Califonia, USA : ANR Publication 8149, 2004.

Cited by

  1. Recent advances in non-thermal disinfection technologies in the food industry vol.27, pp.5, 2017, https://doi.org/10.3136/fstr.27.695