DOI QR코드

DOI QR Code

Effects of plasma ion nitriding temperature using DC glow discharge on improvement of corrosion resistance of 304 stainless steel in seawater

천연 해수에서 304 스테인리스강의 내식성에 미치는 DC glow 방전 플라즈마 이온질화처리 온도의 영향

  • Chong, Sang-Ok (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Park, Il-Cho (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • Received : 2016.12.19
  • Accepted : 2017.03.09
  • Published : 2017.03.31

Abstract

Plasma ion nitriding has been widely used in various industries to improve the mechanical properties of materials, especially stainless steels by increasing the surface hardness. It has the particular advantages of less distortion compared to that in the case of hardening of steel, gas nitriding, and carburizing; in addition, it allows treatment at low-temperatures, and results in a high surface hardness and improved corrosion resistance. Many researchers have demonstrated that the plasma ion nitriding process should be carried out at temperatures of below $450^{\circ}C$ to improve corrosion resistance via the formation of the expanded austenite phase(S-phase). Most experimentals studied to date have been carried out in chloride solutions like HCl or NaCl. However, the electrochemical characteristics for the chloride solutions and natural seawater differ. Hence, in this work, plasma ion nitriding of 304 stainless steels was performed at various temperatures, and the electrochemical characteristics corresponding to the different process temperatures were analyzed for the samples in natural seawater. Finally the optimum plasma ion nitriding temperature that resulted in the highest corrosion resistance was determined.

플라즈마 이온질화 기술은 특히 스테인리스강의 표면경도 향상을 통한 기계적 성질 개선을 위해 산업 전반에서 널리 사용되고 있다. 또한 저온처리가 가능할 뿐만 아니라 담금질 강, 가스 질화 또는 침탄에 비해 변형이 적으며, 높은 표면 경도와 부식 저항성을 향상시키는 이점이 있다. 많은 연구자들에 의해 $450^{\circ}C$ 이하의 온도에서 플라즈마 이온질화 처리 시 expanded austenite(S-상)에 의해 부식 저항성이 향상되는 것으로 나타났다. 이때 대부분의 실험은 HCl 또는 NaCl과 같은 염화물 용액에서 실시되었다. 그러나 전기화학적인 요인으로서 염화물 용액과 천연해수 사이에는 차이가 있다. 따라서 본 연구에서는 304 스테인리스강에 대하여 다양한 온도에서 플라즈마 이온질화 처리 후 천연해수 용액에서 전기화학적 특성 분석을 통해 결과적으로 내식성이 가장 우수한 최적의 플라즈마 이온질화 처리 온도 조건을 규명하였다.

Keywords

References

  1. P. Marshall, Austenitic Stainless Steels, New York, USA: Elsevier Applied Science Publishers, 1984.
  2. M. R. Sriraman and R. Vasudevan, "Influence of ultrasonic cavitation on surface residual stresses in AISI 304 stainless steel," Journal of Materials Science, vol. 33, no. 11, pp. 2899-2904, 1998. https://doi.org/10.1023/A:1017506424360
  3. A. Al-Hashem, P. G. Caceres, A. Abdullah, and H. M. Shalaby, "Cavitation corrosion of duplex stainless steel in seawater," NACE International, vol. 53, no. 2 pp. 103-113, 1997.
  4. K. H. Lo, F. T. Cheng, C. T. Kwok, and H. C. Man, "Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder," Surface and Coatings Technology, vol. 165, no. 3, pp. 258-267, 2003. https://doi.org/10.1016/S0257-8972(02)00739-9
  5. Y. Zheng, S. Luo, and W. Ke, "Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions," Wear, vol. 262, no. 11-12, pp. 1308-1314, 2007. https://doi.org/10.1016/j.wear.2007.01.006
  6. L. Nosei, S. Farina, M. Avalos, L. Nachez, B. J. Gomez, and J. Feugeas, "Corrosion behavior of ion nitrided AISI 316L stainless steel," Thin Solid Films, vol. 516, no. 6, pp. 1044-1050, 2008. https://doi.org/10.1016/j.tsf.2007.08.072
  7. D. L. Williamson, J. A. Davis, and P. J. Wibur, "Structure and properties of plasma-nitrided stainless steel," Surface and Coatings Technology, vol. 74, no. 1, pp. 412-416, 1995. https://doi.org/10.1016/0257-8972(95)08246-8
  8. D. A. Jones, Principles and prevention of corrosion, New Jersey, USA: John Wiley & Sons, 1996.
  9. J. Baranowska and B. Arnold, "Corrosion resistance of nitrided layers on austenitic steel," Surface and Coatings Technology, vol. 200, no. 22, pp. 6623-6628, 2006. https://doi.org/10.1016/j.surfcoat.2005.11.099
  10. T. Nakanishi, T. Tsuchiyama, H. Mitsuyasu, Y. Iwamoto, and S. Takaki, "Effect of partial solution nitriding on mechanical properties and corrosion resistance in a type 316L austenitic stainless steel plate," Materials Science and Engineering: A, vol. 460-461, pp. 186-194, 2007. https://doi.org/10.1016/j.msea.2007.01.024
  11. C. X. Li and T. Bell, "Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions," Corrosion Science, vol. 48, no. 8, pp. 2036-2049, 2006. https://doi.org/10.1016/j.corsci.2005.08.011
  12. M. Kuczynska-Wydorska and J. Flis, "Corrosion and passivation of low-temperature nitrided AISI 304L and 316L stainless steels in acidified sodium sulphate solution," Corrosion Science, vol. 50, no. 2, pp. 523-533, 2008. https://doi.org/10.1016/j.corsci.2007.07.003
  13. N. Yasumaru, "Low-temperature ion nitriding of austenitic stainless steels," Materials Transactions Japan Institute of Metals and Materials(JIM), vol. 39, no. 10, pp. 1046-1052, 1998.
  14. M. K. Lei and Z. L. Zhang, "Plasma source ion nitriding: A new low temperature, low-pressure nitriding approach," Journal of Vacuum Science and Technology A, vol. 13, no. 6, pp. 2986-2990, 1995.
  15. E. Menthe, A. Bulak, J. Olfe, A. Zimermann, and K. T. Rie, "Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding," Surface and Coatings Technology, vol. 133-134, pp. 259-263, 2000. https://doi.org/10.1016/S0257-8972(00)00930-0
  16. Y. C. Lin and S. C. Chen, "Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment," Journal of Materials Processing Technology, vol. 138, no. 1-3, pp. 22-27, 2003. https://doi.org/10.1016/S0924-0136(03)00043-8
  17. M. G. Fontana, Corrosion Engineering, 3rd Edition, New York, USA: McGraw-Hill Book Company, 1986.
  18. R. C. Newman and M. A. A. Ajjawi, "A micro-electrode study of the nitrate effect on pitting of stainless steels," Corrosion Science, vol. 26, no. 12, pp. 1057-1063, 1986. https://doi.org/10.1016/0010-938X(86)90133-2
  19. M. K. Lei and X. M. Zhu, "In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels," Biomaterials, vol. 22, no. 7, pp. 641-647, 2001. https://doi.org/10.1016/S0142-9612(00)00226-X

Cited by

  1. 주조 스테인리스강의 해양환경 하에서 플라즈마 이온질화 공정온도에 따른 부식특성 연구 vol.50, pp.6, 2017, https://doi.org/10.5695/jkise.2017.50.6.504