DOI QR코드

DOI QR Code

탄-소성 손상모델을 활용한 고망간강의 인장거동 모사에 관한 연구

Non-linear tensile behavior of high manganese steel based on elasto-plastic damage model

  • Kim, Jong-Hwan (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Jeong-Ho (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Seul-Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Chun, Min-Sung (Central Research Institute, Samsung Heavy Industries) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 투고 : 2016.09.13
  • 심사 : 2017.03.17
  • 발행 : 2017.03.31

초록

고망간강은 저온환경에서 강도 및 내구성 측면에서 우수한 기계적 성질을 가지고 있다. 최근 고망간강은 우수한 강도와 내구성을 바탕으로 LNG 화물창내에서 사용되는 SUS강, 니켈강의 대체재로 고려되고 있다. 이러한 연구의 일환으로, 본 연구에서는 고망간강의 기계적 물성치와 비선형 거동을 조사하기 위해 상온/극저온(-110K)에서 인장시험을 수행하였다. 또한 재료의 거동을 모사하기 위해 수정된 탄-소성 손상모델을 ABAQUS가 제공하는 사용자지정 재료 서브루틴(UMAT)에 유한요소 정식화과정을 거쳐 탑재하였다. 마지막으로 UMAT을 적용한 유한요소해석을 수행하였고 제안된 UMAT의 유효성 검증을 위해 해석결과를 인장시험 결과와 비교하였다. 그 결과, 제안된 UMAT은 고망간강의 비선형 거동을 효과적으로 모사함을 확인하였다.

High manganese steel exhibits excellent mechanical properties with respect to strength and durability at low temperatures. Recently, high manganese steel has been considered as an alternative to existing materials, such as nickel steel and SUS304L for application as tank material for Liquefied Natural Gas (LNG) cargo containment systems. In the present study, tensile tests were performed at room and cryogenic temperatures in order to investigate the mechanical properties and non-linear tensile behavior of high manganese steel. In addition, elasto-plastic damage model was applied using the finite element analysis software ABAQUS via a user defined material subroutine (UMAT) to describe the material behavior. Finally, the results of the finite element simulations using the UMAT were compared to those of the tensile tests in order to validate the proposed UMAT. It has been demonstrated that the UMAT can effectively describe the non-linear tensile behavior of high manganese steel.

키워드

참고문헌

  1. J. Lemaitre, "A continuous damage mechanics model for ductile fracture," Journal of Engineering Materials and Technology, vol. 107, no. 1, pp. 83-89, 1985. https://doi.org/10.1115/1.3225775
  2. P. O. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin, "An enhanced Lemaitre model formulation for materials processing damage computation," International Journal of Material Forming, vol. 4, no. 3, pp. 299-315, 2011. https://doi.org/10.1007/s12289-010-0996-5
  3. D. Kujawski, "Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys," International Journal of Fatigue, vol. 23, no. 2, pp. 95-102, 2011. https://doi.org/10.1016/S0142-1123(00)00085-2
  4. W. H. Tai and B. X. Yang, "A new microvoid-damage model for ductile fracture," Engineering Fracture Mechanics, vol. 25, no. 3, pp. 377-384, 1986. https://doi.org/10.1016/0013-7944(86)90133-5
  5. S. Chandrakanth and P. C. Pandey, "An isotropic damage model for ductile material," Engineering Fracture Mechanics, vol. 50, no. 4, pp. 457-465, 1995. https://doi.org/10.1016/0013-7944(94)00214-3
  6. E. A. De Souza neto, "A fast, one-equation integration algorithm for the Lemaitre ductile damage model," Communications in Numerical Methods in Engineering, vol. 18, no. 8, pp. 541-554, 2002. https://doi.org/10.1002/cnm.511
  7. J. S. Lee, K. S. Kim, Y. I. Kim, C. H. Yu, J. I. Park, and B. H. Kang, "Fatigue strength assessment of high manganese steel for LNG CCS," Journal for the Society of Naval Architects of Korea, vol. 51, no. 3, pp. 246-253, 2014. https://doi.org/10.3744/SNAK.2014.51.3.246
  8. K. Y. Lee, T. H. Kim, and H. I. Lee, "Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and Fe Analysis," The Korean Society of Mechanical Engineers A, vol. 33, no. 10, pp. 1054-1064, 2009. https://doi.org/10.3795/KSME-A.2009.33.10.1054
  9. S. K. Kim, C. S. Lee, J. H. Kim, M. H. Kim, and J. M. Lee, "Computational evaluation of resistance of fracture capacity for SUS304L of liquefied natural gas insulation system under cryogenic temperatures using ABAQUS user-defined material subroutine," Materials & Design, vol. 50, pp. 522-532, 2013. https://doi.org/10.1016/j.matdes.2013.03.064
  10. S. K. Kim, J. H. Kim, M. H. Kim, and J. M. Lee, "Numerical model to predict deformation of corrugated austenitic stainless steel sheet under cryogenic temperatures for design of liquefied natural gas insulation system," Materials & Design, vol. 57, pp. 26-39, 2014. https://doi.org/10.1016/j.matdes.2013.12.037
  11. S. K. Kim, C. S. Lee, J. H. Kim, M. H. Kim, B. J. Noh, and J. M. Lee, "Estimation of fatigue crack growth rate for 7% nickel steel under room and cryogenic temperatures using damage-coupled finite element analysis," Materials, vol. 5, no. 2, pp. 603-627, 2015.
  12. S. S. Sohn, S. M. Hong, J. H. Lee, B. C. Suh, S. K. Kim, and B. J. Lee, "Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels," Acta Materialia, vol. 100, pp. 39-52, 2015. https://doi.org/10.1016/j.actamat.2015.08.027
  13. N. Aravas, "One the numerical integration of a class of pressure-dependent plasticity," International Journal for Numerical Methods in Engineering, vol. 24, no. 7, pp. 1395-1416, 1987. https://doi.org/10.1002/nme.1620240713
  14. K. Jin, X. Guo, J. Tao, H. Wang, N. Kim, and Y. Gu, "A model of one-surface cyclic plasticity with Lemaitre damage criterion for plastic instability prediction in the incremental forming process," International Journal of Mechanical Sciences, vol. 114, pp. 88-97, 2016. https://doi.org/10.1016/j.ijmecsci.2016.05.016
  15. P. Hu, D. Shi, L. Ying, G. Shen, and W. Liu, "The finite element analysis of ductile damage during hot stamping of 22MnB5 steel," Materials & Design, vol. 69, pp. 141-152, 2015. https://doi.org/10.1016/j.matdes.2014.12.044
  16. M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, J. Nikbin, and H. Hadavinia, "Numerical analysis of damage evolution in ductile solids," Structural Integrity & Durability, vol. 1, no. 1, pp. 67-82, 2005.
  17. D. Anderson, S. Winkler, A. Bardelcik, and M. J Worswick, "Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel," Materials & Design, vol. 60, pp. 198-207, 2014. https://doi.org/10.1016/j.matdes.2014.03.073