
Copyright ⓒ 2017 The Digital Contents Society 149 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

http://dx.doi.org/10.9728/dcs.2017.18.1.149

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 21 December 2016; Revised 29 December 2016
Accepted 25 February 2017

*Corresponding Author: Kyungbaek Kim

Tel: +82-62-530-3438
E-mail: kyungbaekkim@jnu.ac.kr

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 18, No. 1, pp. 149-158, Feb. 2017

농업 빅데이터 수집 및 분석을 위한 플랫폼 설계

뉘엔 반 퀴엣 · 뉘엔 신 녹 · 김 경 백*

전남대학교 전자컴퓨터공학부

Design of a Platform for Collecting and Analyzing Agricultural Big
Data
Van-Quyet Nguyen · Sinh Ngoc Nguyen · Kyungbaek Kim*

Department of Electronics and Computer Engineering, Chonnam National University

[요 약]

빅데이터는 경제개발에서 흥미로운 기회와 도전을 보여왔다. 예를 들어, 농업 분야에서 날씨 데이터 및 토양데이터와 같은 복

합데이터의 조합과 이들의 분석 결과는 농업종사자 및 농업경영체들에게 귀중하고 도움되는 정보를 제공한다. 그러나 농업 데이

터는 센서들과 농업 웹 마켓 등의 다양한 형태의 장치 및 서비스들을 통해 매 분마다 대규모로 생성된다. 이는 데이터 수집, 저장,
분석과 같은 빅데이터 이슈들을 발생시킨다. 비록 몇몇 시스템들이 이 문제를 해결하기 위해 제안되었으나, 이들은 다루는 데이터

종류의 제약, 저장 방식의 제약, 데이터 크기의 제약 등의 문제를 여전히 가지고 있다. 이 논문에서는 농업데이터의 수집과 분석 플

랫폼의 새로운 설계를 제안한다. 제안하는 플랫폼은 (1) Flume과 MapReduce를 이용한 다양한 데이터 소스들로부터의 데이터 수

집 방법, (2) HDFS, HBase, 그리고 Hive를 이용한 다양한 데이터 저장 방법, (3) Spark와 Hadoop을 이용한 빅데이터 분석 모듈들을

제공한다.

[Abstract]

Big data have been presenting us with exciting opportunities and challenges in economic development. For instance, in the
agriculture sector, mixing up of various agricultural data (e.g., weather data, soil data, etc.), and subsequently analyzing these data
deliver valuable and helpful information to farmers and agribusinesses. However, massive data in agriculture are generated in
every minute through multiple kinds of devices and services such as sensors and agricultural web markets. It leads to the
challenges of big data problem including data collection, data storage, and data analysis. Although some systems have been
proposed to address this problem, they are still restricted either in the type of data, the type of storage, or the size of data they
can handle. In this paper, we propose a novel design of a platform for collecting and analyzing agricultural big data. The proposed
platform supports (1) multiple methods of collecting data from various data sources using Flume and MapReduce; (2) multiple
choices of data storage including HDFS, HBase, and Hive; and (3) big data analysis modules with Spark and Hadoop.

색인어 : 농업 빅데이터 플랫폼, 분산시스템, 수집, 분석, 저장

Key word : Agricultural Big Data Platform, Distributed Systems, Collecting, Analyzing, Storage.

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 150

Ⅰ. Introduction

Big data plays an important role in modern agriculture
development. It has been a key driver of the progress made in
precision agriculture, whereby farmers and agribusinesses are
using the resources at their disposal in the most efficient way
possible to get maximum yields. However, the massive data in
agriculture are generated in every minute through multiple kinds
of devices and services such as sensors, social networks, and
agricultural web markets. Therefore, collecting these data from
the many sources and translating them into useful information are
the challenges of big data in order to improve business processes
continuously.

There are several techniques and tools for collecting data from
web sites as shown in [1][2]. The most popular web page
analyzing tool is Jsoup [3] based on Java. Jie Wang et al. [4] have
been designed and implemented an agricultural products big data
platform based on Jsoup, in which the data were extracted from
the URL and contents of agricultural web sites. However, their
system only supported to deploy on a single computer which
encounters various challenges of big data problem. Also,
collecting data from web sites has a limitation of the number of
available HTTP requests. It often takes a few seconds per request
to obtain available resources. Meanwhile, most of agriculture web
sites provide the data as a form of a table with many pages, and it
requires a lot of simultaneous HTTP requests to crawl these data.
For example, in the web site of Gwangju Seobu market, the price
data of agriculture products are generated in around five hundred
pages per day, and these data are updated continuously in every a
few minutes. Therefore, in order to crawl these continuous and
large data with high performance as well as high availability, it is
essential to design a crawling system which collects data in
parallel and real-time fashion. In this paper, we design a data
collector based on Flume [5] and Hadoop [6] framework (more
details see in Section 3).

For data storage, a traditional database system such as a
Relational DataBase Management System (RDBMS) is not
suitable to store various types of big data. Currently, Hadoop
Distributed Files System (HDFS) [7] is widely used for a basic
distributed storage of big data. It enables scalable and reliable
data storage, and it was designed to span large clusters of
commodity servers. Besides HDFS which is a basic storage, a
storage framework for big data is Hbase. Actually Hbase has a
data model designed to provide quick random access to huge
amounts of structured data. It is built on the top Apache Hadoop
and becomes an increasingly popular database choice for
applications which need fast random access to large amounts of

data. Another data storage framework is Hive which is used to
store and process big data in distributed environment with
SQL-like query language called Hive Query Language(HiveQL).
In our platform, we utilize the advantages of both storage
frameworks for designing data storage modules (more details see
in Section 4).

For analyzing big data, there are several frameworks
supporting effective parallel processing in distributed modes.
Apache Hadoop has been the most popular framework for big
data processing. It provides a parallel computation model
MapReduce [8]. Recently, Apache Spark [9] has emerged as a
leading distributed computing framework for real-time analytics
with its memory-oriented architecture and flexible processing
libraries. These two frameworks are being widely used in many
big data applications, and there are some reports for simple
performance comparison between Hadoop and Spark in past
[10][11]. However, no comprehensive study related to the
performance of these two frameworks in the aspect of the volume
of data and the complexity of computation. In this paper, we
highlight the performance comparison between Spark and
Hadoop with various volumes and complexities in order to
evaluate the design choice of data processing modules of our
proposed agricultural big data platform.

 The rest of this paper is organized as follows. In Section 2, we
present the architecture of agricultural big data platform. Section
3 shows the design choice of data collecting modules for crawling
and aggregating real-time and archival data from Internet. The
design choice of data storage modules is presented in Section 4.
In section 5, we presented the design choice of big data
processing which conducts not only simple arithmetic calculation
but also various complex analyses such as machine learning
algorithms and image processing algorithms. Section 6 shows the
experiment results to evaluate our proposed platform. Finally, we
conclude this paper and discuss future works in Section 7.

Ⅱ. Architecture of Proposed Platform

We propose a platform for collecting and analyzing agriculture
big data with four parts as follows: Data Collector, Data Storage,
Data Analysis, and Decision Making module. Figure 1 shows the
overview of the architecture of our platform.

The first component in our architecture is Data Collector. We
separate input data into two kinds of input, the first one is
real-time data from sensors or web pages and the second is
archival data from archives. For real-time data, we use Flume to
collect them into HDFS. For archival data, whose volume is huge,

Design of a Platform for Collecting and Analyzing Agricultural Big Data

151 http://www.dcs.or.kr

그림 1. 제안 구조의 개요

Figure 1. Overview of the proposed architecture

그림 3. 하둡 맵리듀스를 이용한 기록적 데이터 수집

Figure 3. Archival data collecting with Hadoop Map
Reduce

그림 2. 아파치 플럼을 이용한 실시간 데이터 수집

Figure 2. Real-time data collecting with Apache Flume

we develop a MapReduce-based module to increase the speed of
collecting data by gathering them in the parallel manner. During
collecting data we use Data Cleaner to remove the redundant data
and irregular data.

In order to store the data from Data Collector, we use Hadoop
Distributed File System (HDFS) as a basic big data distributed
storage running on commodity servers with low-cost hardware.
For Data Storage, we also have HBase which is a distributed
column-oriented database built on top of HDFS. Hbase is a data
model designed to provide quick random access to huge amounts
of structured data. We use other big data storage, Hive, that is a
data warehouse infrastructure tool to process structured data in
Hadoop. It resides on top of Hadoop to summarize big data, and
makes querying easy. Also, we use Sqoop to import data from csv
and xls files into HDFS, Hive or HBase. Sqoop is also used to
export the results after analysis back to MySQL.

Data Analysis is an important component in the proposed
platform. After collecting and storing data, we develop
Spark-based and Hadoop-based processing modules for analyzing
a large amount of data with various methods. To show the
viability of our platform, we implement various machine learning
algorithms to making clusters or classifying data in these
processing modules such as K-Mean and Naive Bayes.

The last module of the system is Decision Making module. It
receives the result from the Data Analysis module, and generate
some useful decisions for user to manage their farm easily. Also,
it provides the statistical data stored in Data Storage such as
HDFS, Hive, HBase and MySQL for users to use various kinds of
purposes.

Ⅲ. Design Choice of Collecting Module

3-1 Design of Real-Time Data Crawling Module

This module is designed to crawl the data generated by other
systems or services. To simplify the crawling process, we use
powerful capabilities of handling streaming data of Flume for
collecting real-time data efficiently and moving large amounts of
data periodically into HDFS.

Figure 2 shows our design for collecting data using Flume. In
this model, we use text files as input data of Flume, such as price
data of products provided from agricultural web sites. We set the
type of a source is Exec which runs a given command such as
“tail –F [file]” to generate the fresh and periodic data of prices
continuously. Here, the memory is used as a Flume channel and
the generated data from sources are stored in memory. Note that,
the number of data in channel is configurable in Flume. For the
final output data, we chose sink type as HDFS which writes
events into the HDFS as text file format, and these files are used
for further analysis.

3-2 Design of Archival Data Crawling Module

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 152

그림 5. Hbase 테이블 데이터 저장의 예

Figure 5. Example of storing data on HBase Table

그림 4. 맵 함수인 DataCrawl의 알고리즘

Figure 4. Algorithm of DataCrawl for map function

Not only real-time data, but also archival data is essential for
big data analysis. That is, more data is better than more
sophisticated modelling. Thus, we design a module to collect the
archival data from various web sites such as few years long price
data of agricultural products and few years weather information.
We observed that the data structure of displaying product price is
similar in the most of Korean agriculture web markets, and the
amount of data per year is approximately two millions of records.
To collect these huge data efficiently, we use Hadoop framework
with MapReduce programming model.

In Figure 3, a simple model of gathering archival data from
web sites which are described on HDFS input files. A HDFS file
contains the information of procedures which we want to gather
from various web sites. The information of procedures is
described as a tuple of a product code, the url of a web site, target
year, and target month. The information of procedures are divided
and each map function handles them with DataCrawl procedures
which uses Jsoup API to connect and extract data from the web
site corresponding the information of procedures and store the
extracted data into HDFS. That is, each map function collects the
data of product prices from agriculture web market in the order of
years and months. Detail algorithm of DataCrawl is described in
Figure 4.

In this module we omit reduce functions, even though
MapReduce framework provides both of map and reduce function
because the job of collecting archival data is simple. According to
this we can take advantages in time by ignoring shuffle and sort
phase between map and reduce function.

Ⅳ. Design Choice of Data Storage

Module

4-1 Design of Basic Distributed Storage

Basically, we need a basic storage for storing raw data which
contains the crawled information from web sites, sensors, and
users. These raw data are usually contained in text files in
sequential manner. For example, in case of image processing we
may convert a RGB color image into gray image which includes
arrays of bits 0 and 1, and the price data crawled from web sites
are stored in a text file. These raw data are the basic data for
analysis and we use HDFS as a basic storage for them.

4-2 Design of Storage for Random Access

Even though most of data are stored on HDFS in our platform,
we also use HBase to store structured data in order to improve
the performance of searching random data. Sometimes, it is
required to access any point of data during big data analysis. That
is, it is essential to provide quick random access to huge amount
of data in our platform. In order to achieve this effective random
access, we use HBase for manage a data schema and data storage
for random access.

Figure 5 shows an example of data schema for agricultural data
in HBase table. It provides a column-oriented and row-oriented
mechanism and it manages data through column families and
Row-ID. Each column family includes several sub-columns like
the columns in SQL database. When we load the data from HBase
table to processing phase, all of sub-column will be load together.
It is more convenient for programmer in processing data. Row-ID
is an identity of each row. It looks like the index in SQL, which is
used for random data access.

Design of a Platform for Collecting and Analyzing Agricultural Big Data

153 http://www.dcs.or.kr

그림 6. 맵리듀스를 이용한 이미지 히스토그램 계산

Figure 6. Image histogram calculation using MapReduce

4-3 Design of Storage for querying data

In our platform, we also consider an easy API for querying
data with SQL query language. For this, we use Hive because it is
simple to implement and easy to integrate into our platform. Hive
is built on the top of Hadoop and provides SQL query language
called HiveQL for easy interacted to data.

Ⅴ. Design Choice of Processing Module

In agricultural data processing, we considers to two kinds of
data: one is text data and another is image data.

For processing text data, we often work with two kind of
algorithms: (1) the arithmetic calculation that used to process data
with only one step (non-iterative job) and (2) machine learning
algorithms which process data with iterative computation. Both of
algorithms are supported by our platform with Hadoop and Spark.

For handling image data, we design and implement a image
processing module which provides customized InputFormat and
OutputFormat classes of Hadoop for representing image, and
contains image processing algorithms.

5-1 Design of Non-Iterative Processing

For data analysis, we can consider a non-iterative processing
job which runs one-time and gets the result. For example,
calculating the total field area of each farm or the average product
price of each market is a non-iterative processing job. This job
handle very large volume of data set such as 2GB of agriculture
data with more than 11 millions of records which contains the
information about the farm and its related information (the area
over each field, products for each field). For supporting this kind
of jobs, we provide simple algorithm templates for non-iterative
jobs on both Hadoop and Spark.

5-2 Design of Iterative Processing

The purpose of this case is to evaluate the performance of
Hadoop and Spark in processing a huge amount of data with an
iterative algorithm such as K-means algorithm. K-means
algorithm is a well-known clustering method. It groups objects
(data points) based on features into K number of groups. K-means
algorithm performs the following steps:

Step 1: Selecting k data points from dataset to be used as each
cluster centroid (random).

Step 2: Assigning data points to clusters according to their

distance to each cluster centroid.
Step 3: For each cluster, recomputing its cluster centroid using

the newly assigned cluster members.
Step 4: Going back to step 2 until the process converges.
In k-means algorithm, the computation cost is mainly made in

the step 2 for calculating distances, and in each iteration it
requires a total of (n*k) times of distance computations.
Therefore, the performance of each iteration is the key for
improving the performance of the algorithm. According to this,
we separate the distance calculation step from the main algorithm
and implement a map-reduce function for this step for
MapReduce and Spark. It is possible because the execution order
of distance calculation does not affect the final result of
clustering. Especially for Spark, we implement a Java program to
set up the parameters and call functions of K-means algorithm in
Spark MLlib library.

Based on this simple design and implementation, we provide a
simple templates for iterative jobs on MapReduce and Spark for
supporting iterative jobs.

5-3 Design of Image Processing Module

In our platform, image processing operations can be divided
into two levels including low-level image processing and
high-level image processing. For low-level image processing, we
provide algorithms for pre-processing which operates at the pixel
level. The input to low-level image processing operators is an
image whereas the output is either image or data. For high-level
image processing, we implement the algorithms in order to
generate higher abstractions. They are used to interpret the image
content such as classification and object recognition.

For an example, we implemented a Hadoop based image
histogram calculation as a low-level image processing. A original
image has three intensive levels in histrogram including i1, i2 and
i3. To calculate the histogram for a image with Hadoop, the
original image is sliced into sub-images and stored on HDFS.
Then, the following three steps are performed like figure 6.

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 154

그림 7. 플랫폼 설치 레이아웃

Figure 7. Layout of platform deployment

Step 1: Each file is read, then the intensities of pixels are
calculated by map tasks. The input for each map task is a pair
(key, value), in which key is identified by file name and value is
the content of sub-image. The output of map task is the list of
(key’,value’), in which key’ is the intensity level and value’ is the
number of pixels corresponds to the intensity level.

Step 2: It collects all of (key’,value’) pairs of map tasks, then
sort and shuffle by key’. The pairs with the same key’ usually are
gathered belong to a group which will be processed by the same
reduce task.

Step 3: In the reduce phase, the input is the output of the
combiner in Step 2, each reduce task has a different key. In this
example, the key for each reduce task is chosen corresponds to
each intensity level in the image. This phase performs a
calculation total of pixels for each intensity level. By assembling
the output of each reduce task, we can get the final result that is a
histogram of the original image.

Ⅵ. Platform Deployment

To show viability of our platform, we deploy our proposed
platform into real machines and evaluate it. Five machines are
used to deploy the proposed platform which is composed of one
master node and four slave nodes consequently named as Tiger,
Lion, Jaguar, Cheetah, and Leopad as shown in Figure 7. We
deployed Spark, Hadoop, Hive, Hbase on all of 5 machines. Each
slave node has 4 CPU cores and 16GB of RAM. The IP address
of the master node sets to 192.168.20.101, and other slave nodes,
region servers, or workers have IP addresses from 192.168.20.102
to 192.168.20.105. The network deployment of the big data
frameworks in our platform is as shown in Figure 7.

For Hadoop framework, the NameNode process and the
YARN cluster manager are launched on the master node, and
each slave node is responsible for launching its own DataNode
process. In our platform, the amount of physical memory which is
allocated for containers in our Hadoop framework is 64GB.
Therein, the minimum allocation for every container request at
the resource manager sets to 1GB, the amount of memory to
request from the scheduler for each map/reduce task sets to 2GB.

For Spark framework, the master process and the built-in
standalone cluster are started on the master node. Each worker is
responsible for launching the executor process. Here, the amount
of memory to use for the driver process set to 1GB, while amount
of memory to use per executor process set to 14GB.

For HBase framework, the HMaster process is launched on the
master node. This master processes may be collocated with the

Hadoop NameNode and Resource Manager. Designate the
remaining nodes as RegionServer nodes. Each node runs a
RegionServer, which may be collocated with a Hadoop
NodeManager and a DataNode.

Besides, other frameworks which support to import and
transfer the data to HDFS such as Sqoop and Apache Fume are
launched on the master node.

Ⅶ. Evaluation

In this section, we evaluate our platform in three main function
including : data collecting, data storage and data processing.

6-1 Evaluation of Data Collecting

For real-time data collecting, we deployed Flume on master
node, in which, one agent is configured to collect the data that are
generated by the web site of Gwangju Seobu market. We
implemented an application to simulate a service that provides
product price data in real-time manner, the data are collected from
the web site of Gwangju Seobu market and generated to the text
file in every two minutes. The Flume agent monitor this file and
transfer the data to HDFS in our system. Through this evaluation
we observed that the HDFS files are created in every two minute
successfully.

For archival data collecting, we experimented with crawling
data generated by two sites, Gwangju Seo market and Eomgung
market in 6 months from January 2016 to June 2016. Here, we
run only one Hadoop job with 12 map tasks, and it takes 788
minutes to collect price data from 144,000 web pages. That is,
price data of each page are collected in around 330 milliseconds.
On the other hand, with the single machine with 8 CPU cores, the
total time cost for collecting similar amount of archival data takes
more than 8000 minutes. According to these results, it is observed

Design of a Platform for Collecting and Analyzing Agricultural Big Data

155 http://www.dcs.or.kr

그림 10. 다양한 데이터 크기에 대한 하둡과 스파크 성능 비교

Figure 10. Comparison between Hadoop and Spark with
varying data size.

그림 8. 연속 검색의 성능 비교

Figure 8. Comparison of sequential searching

그림 9. 무작위 검색의 성능 비교

Figure 9. Comparison of random searching

that our platform can collect archival data more efficiently that
powerful standalone solutions.

6-2 Evaluation of Data Storage

In order to evaluate the performance of data storage in our
platform, we setup an experiment on Spark to compare the
execution time of searching data stored in HDFS and HBase. We
perform a sequential searching to calculate the total field area of
each farm in agricultural dataset. It is useful for a manager who
monitors the statistic information of each farm. Another case is
random searching to calculate total field area of some given farms
specified by Farm IDs. It is useful for a user to get the
information of a specific farm.

Figure 8 shows the result of sequential searching. In this case,
Spark with HDFS performs faster than Spark with HBase. On the
other hands, in the case of random searching, Spark with HBase
has better performance than Spark with HDFS as shown in Figure
9. Because HBase provides Column-Family mechanism and
Row-ID access, Spark with HBase spends less time in reading
data in random.

6-3 Evaluation of Data Processing

For evaluating the performance of handling non-iterative jobs,
we implement a computation module for calculating total field
area of farms on Hadoop and Spark. Figure 10 shows the
execution time each computation module on various size of
dataset from 0.5GB to 2.0GB. From the result, it is observed that
the execution time of Hadoop and Spark increases along with the
size of data. It is also observed that the computation module
running on Spark outperforms Hadoop around 1.4 times in an
average of execution time for all cases of data size.

For evaluating the performance of handling iterative jobs, we
implement a computation module for clustering soil data with
K-means algorithm on Hadoop and Spark. To compare the
performance between Hadoop and Spark in detail, the number of
data points for clustering and the number of iterations are varied.
Figure 11 and Figure 12 shows the results of running K-means
algorithm with various number of data points and various number
of iterations, respectively. In both figures, it is observed that the
execution time of Hadoop increases greatly along with both of
parameters but Spark keeps the execution time relatively smaller
than Hadoop. In Figure 11, Spark is around 5.5 times faster than
Hadoop for varying number of data points. In Figure 12, Spark is
around 2 time faster than Hadoop with two iterations, but Spark is
about around 6 times faster than Hadoop with eight iterations.
According to these results, it is proved that iterative jobs are well
suited to Spark rather than Hadoop.

For evaluating the performance of image processing module,
we implement a image processing module for calculating
histogram of images on Hadoop. For evaluating the performance
of our platform with large amount of image data, multiple data
sets of crop/weed images with different number of images from

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 156

그림 13. 제안된 플랫폼과 기존 로컬 솔루션간의 이미지

처리 수행시간 비교

Figure 13. Comparison of execution time of image
processing between our platform and Local
-based solution

그림 12. 반복횟수에 따른 K-mean 알고리즘 수행시간

Figure 12. Execution time of K-means algorithm with
various number of iterations

그림 14. CPU 코어 개수에 따른 이미지 처리 수행시간

Figure 14. Execution time of image processing with
various number of CPU cores

그림 11. 데이터 포인트 개수에 따른 K-mean 알고리즘 수행시간

Figure 11. Execution time of K-means algorithm with
various number of data points

100 to 800 are collected from Internet. The size of each image is
around 1.5MB in average. Then, the image processing module
runs (1) an algorithm for converting the color image to grayscale
image and (2) Otsu’s algorithm for the binarizing image, which
are in Low-level Image Processing module. To compare the
performance of our platform with a traditional image processing
technique, we also implemented a program in Java which
conducts the same algorithms in a single machine. We named this
program using a single machine as local-based approach through
this evaluation.

Figure 13 shows the comparison of execution time between
our proposed platform and local-based approach. With a small
image dataset (100 images), the execution time of local-based
approach is smaller than our platform. Because our platform
needs to read/write the data at the initial state of the whole
process, so it spends more time to setup the process than

local-based approach. However, with a large image data set more
than 400 images, our platform executes faster than local-based
approach. Thus, our platform is more scalable in aspects of the
volume of input dataset.

We also evaluate the efficiency and scalability in the aspects of
CPU cores. Figure 14 shows the execution time of image
processing algorithms with 400 images on our platform with
various number of CPU cores from 8 to 32. It is observed that the
execution time decreases dynamically when the number of CPU
cores increases. The execution time with 8 CPU cores takes more
1000 seconds; meanwhile, the execution time with 32 CPU cores

Design of a Platform for Collecting and Analyzing Agricultural Big Data

157 http://www.dcs.or.kr

decreases down to 229 seconds. That is, our platform is much
more efficient and scalable than local based approach in the
aspects of processing power as well.

Ⅷ. Conclusion

We presented a novel design of a platform for collecting,
storing and analyzing agricultural big data. In the aspect of
collecting modules of our platform, Apache Flume is used to
crawl the real-time data which simplifies collecting data from
many sources and transfers data to HDFS. Hadoop is used to
collect the archival data such as huge data set from multiple web
sites, in which only map function is utilized in combination with
Jsoup API to speed aggregate data. Moreover, Sqoop is used to
import offline data to HDFS, Hive, and HBase. In the aspect of
storage modules of our platform, HDFS is used for the basic
storage module which contains the raw data of our platform and
supports sequential data searching algorithms. HBase is used for a
storage module which supports efficient random data accessing
algorithms. Moreover, Hive is used for supporting simple SQL
style data queries. In the aspect of processing modules, templates
for non-iterative and iterative jobs are supported and low and high
level image processing jobs are supported. Especially, Spark is
used for templates of non-iterative jobs in order to decrease the
execution time.

For future works, we focus on applying additional analysis
templates with deep learning techniques for our platform to
provide more efficient and useful information to the users.

Acknowledgement

This work was carried out with the support of "Cooperative
Research Program for Agriculture Science and Technology
Development (Project No. PJ01182302)" Rural Development
Administration, Republic of Korea.

References

[1] Ferrara, Emilio, et al. "Web data extraction, applications and
techniques: a survey." Knowledge-based systems 70
(2014): 301-323.

[2] Geng, Hua, Qiang Gao, and Jingui Pan. "Extracting content
for news web pages based on DOM." IJCSNS International
Journal of Computer Science and Network Security 7.2

(2007): 124-129.
[3] Jonathan Hedley. “Jsoup: Java HTML Parser”,

https://jsoup.org/
[4] Wang, Jie, et al. "The crawling and analysis of agricultural

products big data based on Jsoup." Fuzzy Systems and
Knowledge Discovery (FSKD), 2015 12th International
Conference on. IEEE, 2015.

[5] Apache Flume, https://flume.apache.org/.
[6] Apache Hadoop, http://hadoop.apache.org (2009).
[7] Borthakur, Dhruba. "HDFS architecture guide." HADOOP

APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf (2008): 39.

[8] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
simplified data processing on large clusters."
Communications of the ACM 51.1 (2008): 107-113.

[9] Zaharia, Matei, et al. "Spark: Cluster Computing with
Working Sets." HotCloud 10 (2010): 10-10.

[10] Gopalani, Satish, and Rohan Arora. "Comparing apache
spark and map reduce with performance analysis using
K-means." International Journal of Computer Applications
113.1 (2015).

[11] Seung-jun Choi, Jae-Won Park, Jong-Bae Kim and
Jae-Hyun Choi, “A Quality Evaluation Model for
Distributed Processing Systems of Big Data”, Journal of
Digital Contents Society, Vol. 15, Issue 4, pp 533-545,
2014

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 158

Van-Quyet Nguyen

2005: Hung Yen University of Technology and Education. (B.S. Degree).

2011: Ha Noi University of Science and Technology (M.S. Degree).

2015: Chonnam National University. South Korea (Ph.D Degree).

2009～2015: Lecturer in Hung Yen University of Technology and Education.

2015～now： School of Electronics and Computer Engineering.

※Research Interest： BigData Platform, Content Delivery Network, Recommendation System

Sinh Ngoc Nguyen

2009: VietNam National University Ho Chi Minh City - University of Information

Technology (B.S. Degree)

2015: Chonnam National University, South Korea (M.S. Degree).

2013～2015 : Software Engineer at Integrated Circuit Design Research and Education Center

2015～now： School of Electronics and Computer Engineering

※Research Interest： BigData Platform, Software Defined Network, IoT Security

Kyungbaek Kim

1999: Korea Advanced Institute of Science and Technology (KAIST) (B.S. Degree)

2001: Korea Advanced Institute of Science and Technology (KAIST) (M.S Degree)

2007: Korea Advanced Institute of Science and Technology (KAIST) (Ph.D Degree)

2007~2011: Postdoctoral Researcher in University of California Irvine

2012~ now : Professor in Chonnam National University, Gwangju, Korea

Research Interest : Distributed System, Middleware, P2P/Overlay Network, Social Network, SDN

