DOI QR코드

DOI QR Code

A Novel Nonmechanical Finger Rehabilitation System Based on Magnetic Force Control

  • Baek, In-Chul (Department of Electronics Convergence Engineering, Wonkwang University) ;
  • Kim, Min Su (Department of Rehabilitation Medicine, School of Medicine Wonkwang University) ;
  • Kim, Sung Hoon (Department of Electronics Convergence Engineering, Wonkwang University)
  • Received : 2017.02.07
  • Accepted : 2017.03.06
  • Published : 2017.03.31

Abstract

This paper presents a new nonmechanical rehabilitation system driven by magnetic force. Typically, finger rehabilitation mechanisms are complex mechanical systems. The proposed method allows wireless operation, a simple configuration, and easy installation on the hand for active actuation by magnetic force. The system consists of a driving coil, driving magnets (M1), and auxiliary magnets (M2 and M3), respectively, at the finger, palm, and the center of coil. The magnets and the driving coil produce three magnetic forces for an active motions of the finger. During active actuations, magnetic attractive forces between M1 and M2 or between M1 and M3 enhance the flexion/extension motions. The proposed system simply improves the extension motion of the finger using a magnetic system. In this system, the maximum force and angular variation of the extension motion were 0.438 N and $49^{\circ}$, respectively. We analyzed the magnetic interaction in the system and verified finger's active actuation.

Keywords

References

  1. E. B. Brokaw, I. Black, R. J. Holley, and P. S. Lum. IEEE Trans. Neural Syst. 19, 391 (2011). https://doi.org/10.1109/TNSRE.2011.2157705
  2. A. Chiri, N. Vitiello, F. Giovacchini, and S. Roccella, IEEE/ASME Trans. Mechatronics. 17, 884 (2012). https://doi.org/10.1109/TMECH.2011.2144614
  3. M. Bouzit, G. Burdea, G. Popescu, and R. Boian, IEEE/ ASME Trans. Mechatronics. 7, 256 (2002). https://doi.org/10.1109/TMECH.2002.1011262
  4. W. H. Chang and Y. H. Kim, Journal of Stroke. 15, 174 (2013). https://doi.org/10.5853/jos.2013.15.3.174
  5. M. Pignolo, J. Rehabil Med. 41, 955 (2009). https://doi.org/10.2340/16501977-0434
  6. S. Biggar and W. Yao, IEEE Trans. Neural. Syst. Rehabil. Eng. 24, 1071 (2016). https://doi.org/10.1109/TNSRE.2016.2521544
  7. D. Laonardis, M. Barsotti, C Loconsole, M. Solazzi, M. Troncossi, C. Mazzotti, V. P. Castelli, C. Procopio, G. Lamola, C. Chisari, M. Bergamasco, and A. Frisoli, IEEE Trans. Haptics. 8, 140 (2015). https://doi.org/10.1109/TOH.2015.2417570
  8. H. C. Fischer, K. M. Triandafilou, K. O. Thielbar, J. M. Ochoa, E. D. Lazzaro, K. A. Pacholski, and D. G. Kamper, IEEE Trans. Neural Syst Rehabil. Eng. 24, 344 (2016). https://doi.org/10.1109/TNSRE.2015.2513675
  9. G. Belforte, G. Eula, A. Ivanov, and S. Sirolli, Actutors. 3, 84 (2014). https://doi.org/10.3390/act3020084
  10. H. C. Fischer, K. Stubblefield, T. Kline, X. Luo, R. V. Kenyon, and D. G. Kamper, Topics Stroke Rehabil. 12, 1 (2007).
  11. C. H. Yu and S. H. Kim, J. Magn. 21, 616 (2016). https://doi.org/10.4283/JMAG.2016.21.4.616
  12. S. H. Kim, S. Hashi, and K. Ishiyama, IEEE Trans. Mag. 49, 3488 (2013). https://doi.org/10.1109/TMAG.2012.2237544
  13. S. H. Kim and K. Ishiyama, IEEE/ASME Trans. Mechatronics. 19, 1651 (2014). https://doi.org/10.1109/TMECH.2013.2292595
  14. E. P. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, San Diego (2001) pp. 126-142.
  15. D. Vokoun, M. Beleggia, L. Heller, and P. Sittner, JMMM. 321, 3758 (2009). https://doi.org/10.1016/j.jmmm.2009.07.030
  16. L. Kocbach and S. Lubbad, Phys. Educ. 45, 345 (2010). https://doi.org/10.1088/0031-9120/45/4/003