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MODIFIED DUALITY SCHEME FOR SOLVING

MODEL CRACK PROBLEM IN MECHANICS

Robert V. Namm and Gyungsoo Woo∗

Abstract. Duality methods based on modified Lagrangian functional
for solving a model crack problem is considered. Without additional
assumptions of regularity of the solution of an initial problem duality
ratio is established for initial and dual problem.

Introduction

The classical approach to the crack problem is characterized by the equality
type boundary conditions considered at the crack faces, namely, they are as-
sumed to be traction free. This approach cannot guarantee the natural nonpen-
etration condition between crack faces. Moreover, there are practical examples
showing that interpenetration of crack faces may occur.

Recently crack models with nonlinear boundary conditions on crack faces are
investigated. Suitable boundary conditions are written as inequalities which
provide mutual nonpenetration between crack faces. From the standpoint of
mechanics such models are more preferable than the linear classical models.

1. Model crack problem

The crack problem for the Poisson equation is considered with inequality
type boundary conditions on the crack faces. Let Ω ⊂ R2 be a bounded domain
with Lipschitz boundary Γ and γ ⊂ Ω be a cut (crack) inside of Ω. For
simplicity we assume

γ = {(x1, x2) ∈ Ω: a < x1 < b, x2 = 0}
and suppose that both end points (a, 0) and (b, 0) do not belong to the boundary
Γ. Denote Ωγ = Ω\γ.

Introduce the feasible displacement set

K = {v ∈ H1(Ωγ) : [v] ≥ 0 on γ, v = 0 on Γ}

Received March 22, 2016.

2010 Mathematics Subject Classification. 65F10, 65K10, 49M15, 74G15, 74G65.
Key words and phrases. crack problem, duality method, modified lagrangian functional.
∗This work was supported by Changwon National University Foundation Grant 2015-

2016.

c©2017 Korean Mathematical Society

647



648 R. V. NAMM AND G. WOO

✲

✻x2

x1

✬

✫

✩

✪

Ωγ

a b

Figure 1. Domain with straight line cut

and consider the minimizing problem

(1)
{

J(v) = 1
2

∫

Ωγ
|∇v|2 dΩ−

∫

Ωγ
fv dΩ → minv∈K .

Here [v] = v+− v− is the jump of v across γ (v+ is a function value v on upper
crack face, v− is a function value v on lower crack face, marks ± correspond
to positive and negative directs of normal vector n on cut γ); f ∈ L2(Ωγ) is a
given function.

Problem (1) has a unique solution u, which is, simultaneously, a solution of
variational inequality [3]

(2) u ∈ K :

∫

Ωγ

∇u∇(v − u) dΩ ≥
∫

Ωγ

f(v − u) dΩ ∀v ∈ K.

It can be shown that u is a solution (in the generalized sense) of such bound-
ary value problem [3]

−△u =f in Ωγ ,

u =0 on Γ,(3)

[

u
]

≥ 0,
[ ∂u

∂x2

]

= 0,
∂u

∂x2
≤ 0,

∂u

∂x2

[

u
]

=0 on γ.

In [3] questions of a regularity of the solution of problem (1) are considered,
the behavior of the solution and it’s derivatives in neighbourhood of crack tops
is investigated.

2. Duality method for solving the model crack problem

For arbitrary m ∈ L2(γ) construct the set

Km = {v ∈ H1(Ωγ) : v = 0 on Γ, −[v] ≤ m a. e. on γ}.
It is easy to show that Km is a convex closed set in H1(Ωγ).
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On space L2(γ) define the sensitivity functional

(4) χ(m) =

{

infv∈Km
J(v), if Km 6= ∅,

+∞, otherwise.

Taking into account that J(v) is coercive in H1(Ωγ) we note that problem
infv∈Km

J(v) is solvable under condition Km 6= ∅. It is easy to see if m is a
lower bounded function, then Km is not empty. The set Km can be empty if
m ∈ L2(γ)\H1/2(γ) is a lower unbounded function on γ [3, 5].

Functional χ(m) is a proper convex functional on L2(γ), but it’s effective
domain domχ = {m ∈ L2(γ) : χ(m) < +∞} does not coincide with L2(γ).

Notice that domχ is a convex but not closed set. In this case, domχ = L2(γ).
We define the following functional on the space H1(Ωγ) × L2(γ) × L2(γ)

[6, 8]

K(v, l,m) =

{

J(v) + 1
2r

∫

γ

(

(l + rm)2 − l2
)

dΓ, in −[v] ≤ m a.e. on γ,

+∞, otherwise,

and modified Lagrangian functional M(v, l) on space H1(Ωγ)× L2(γ)

M(v, l) = inf
m∈L2(γ)

K(v, l,m) = J(v) +
1

2r

∫

γ

(

(

(l − r[v])+
)2 − l2

)

dΓ.

Here r > 0 is a constant, (l − r[v])+ = max{l − r[v], 0}.
Let us introduce the modified dual functional

M(l) = inf
v∈H1(Ωγ)

M(v, l) = inf
v∈H1(Ωγ )

{

J(v) +
1

2r

∫

γ

(

(

(l − r[v])+
)2 − l2

)

dΓ

}

.

Since

inf
v∈H1(Ωγ)

inf
m∈L2(γ)

K(v, l,m) = inf
m∈L2(γ)

inf
v∈H1(Ωγ)

K(v, l,m),

then functional M(l) has the another presentation [8]

M(l) = inf
m∈L2(γ)

{

χ(m) +

∫

γ

lm dΓ+
1

2

∫

γ

m2 dΓ

}

.

It is easy to see that

(5) M(l) ≤ χ(0) = inf
v∈K

J(v) ∀l ∈ L2(γ).

Let us consider the dual problem

(6)
{

M(l) → supl∈L2(γ) .

Dual functional M(l) is a concave, but not strongly concave functional.
Therefore the problem (6) can be unsolvable. The question of solvability of
problem (6) is closely connected with the regularity of a solution u of prob-
lem (1). It can be proved if u ∈ H2(Ωγ), then − ∂u

∂x2
∈ H1/2(γ) is a solution of

problem (6) [3]. In our earlier publications we investigated the duality methods



650 R. V. NAMM AND G. WOO

based on modified Lagrangian functional under assumption of H2-regularity of
a solution of initial problem. This assumption looks unnatural in crack prob-
lem. Let us consider the duality methods using H1-regularity of the solution u
of problem (1).

We investigate the sensitivity functional χ(m) and the related dual func-
tional M(l).

Theorem 1. Sensitivity functional χ(m) is weakly lower semicontinuous on

L2(γ).

Proof. Since χ(m) is a convex functional [1, 8], then it is sufficient to show that
χ(m) is a lower semicontinuous (according to norm in L2(γ)) functional.

Let {mi} ⊂ L2(γ) be an arbitrary convergent sequence and m = limi→∞mi.
Sensitivity functional χ(m) will be lower semicontinuous if limi→∞ χ(mi) =
+∞ under m /∈ domχ and limi→∞ χ(mi) ≥ χ(m) under m ∈ domχ.

1. Let m /∈ domχ. We can assume that mi ∈ domχ. Let us show that
lim ‖ui‖H1(Ωγ ) = ∞, where ui = argminv∈Kmi

J(v), i = 1, 2, . . . . Suppose the

contrary, that is {ui} has a bounded subsequence. Without loss of generality we
suppose that {ui} is a bounded sequence in H1(Ωγ). From the trace theorem
[3, p. 12] follows that ‖[ui]‖H1/2(γ) ≤ C, where C > 0 is a constant. Then {[ui]}
is a compact sequence in L2(γ). Let t ∈ H1/2(γ) be a weak limit point of this
sequence. Without loss of generality we can assume that t is a weak limit of
{[ui]} in H1/2(γ). Then {[ui]} strongly (that is, in the norm) converges to t
in L2(γ). Since −[ui] ≤ mi on γ, then −t ≤ m, which implies that Km 6= ∅.
This contradiction proves that lim ‖ui‖H1(Ωγ) = ∞.

Because of J(v) is a coercive functional it follows that

lim
i→∞

χ(mi) = lim
i→∞

J(ui) = +∞.

2. Let m ∈ domχ. As above we can assume that mi ∈ domχ. From the
sequence {mi}, we extract a subsequence {mij} for which

lim
j→∞

χ(mij ) = lim
i→∞

χ(mi).

Consider the subsequence {uij}, where uij = argminv∈Kmi
J(v). We can

suppose that {uij} is a bounded sequence inH1(Ωγ) (otherwise, limj→∞ χ(mij )
= +∞ and, together with part 1, it means that Theorem 1 is proved). From
trace theorem [3, p. 12] follows, that sequence {[uij ]} is bounded in H1/2(γ).

Therefore {[uij ]} is weakly compact inH1/2(γ). Let t ∈ H1/2(γ) be a weak limit
point of this sequence. Without loss of generality we can suppose that {[uij ]}
is a weakly convergent sequence, that is t is a weak limit of {[uij ]} in H1/2(γ).

Since H1/2(γ) is compactly embedded in L2(γ) and L2(γ) ⊂ H−1/2(γ), then
{[uij ]} converges to t in L2(γ). We have mij −→ m in L2(γ), {[uij ]} −→ t in
L2(γ), and −[uij ] ≤ mij on γ. Then −t ≤ m on γ.
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Let ˜t = argmin[u]=t on γ J(u). We have

J(uij )− J(˜t) =

∫

Ωγ

∇˜t∇(uij − ˜t) dΩ−
∫

Ωγ

f(uij − ˜t) dΩ

+
1

2

∫

Ωγ

|∇(uij − ˜t)|2 dΩ

= 〈µ, [uij − ˜t]〉+ 1

2

∫

Ωγ

|∇(uij − ˜t)|2 dΩ,

where 〈µ, [v]〉 =
∫

Ωγ
∇˜t∇v dΩ−

∫

Ωγ
fv dΩ and µ ∈ H−1/2(γ) [3, 4].

Since {[uij ]} weakly converges to t in H1/2(γ), we have

lim
j→∞

〈µ, [uij − ˜t]〉 = 0.

From this relation and from the convergence of {[uij ]} to t in L2(γ), we
conclude that

lim
j→∞

χ(mij ) = lim
j→∞

J(uij ) ≥ J(˜t) ≥ χ(m)

or

lim
i→∞

χ(mi) ≥ χ(m).

Parts 1 and 2 imply that the functional χ(m) is weakly lower semicontinuous
on L2(γ) and theorem has been proved. �

For an arbitrary l ∈ L2(γ), we consider the functional

Fl(m) = χ(m) +

∫

γ

lm dΓ+
r

2

∫

γ

m2 dΓ,

where r > 0 is a constant. Then the dual functional M(l) has the form

M(l) = inf
m∈L2(γ)

Fl(m).

From Theorem 1 follows that Fl(m) is a weakly lower semicontinuous func-
tional on L2(γ).

Since χ(m) is a lower semicontinuous functional in L2(γ), then the epigraph
of sensitivity functional

epiχ ≡ {(m, a) ∈ L2(γ)×R,R = (−∞,+∞) : χ(m) ≤ a}
is a convex closed set in L2(γ) × R. According Mazur separation theorem [2,
p. 164] there are ψ ∈ L2(γ) and d ∈ R, such that

χ(m) +

∫

γ

ψmdΓ + d ≥ 0 ∀m ∈ domχ.

Hence Fl(m) ≥ −
∫

γ
ψmdΓ +

∫

γ
lm dΓ + r

2

∫

γ
m2 dΓ− d ∀m ∈ L2(γ).

Therefore Fl(m) −→ +∞ under ‖m‖L2(γ) −→ ∞, that is Fl(m) is a coercive
functional in L2(γ).
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From weakly lower semicontinuity and coercivity of Fl(m) follows, that the
problem

{

Fl(m) → minm∈L2(γ)

has a solution m(l) ∀l ∈ L2(γ). It is easy to see, that for every l ∈ L2(γ)
element m(l) is unique.

We will formulate for dual functional M(l) some statements which proofs is
repeated by proofs of corresponding theorems in [7].

Statement 1. Dual functional M(l) is continuous is L2(γ) (see Theorem 4 in

[7]).

Statement 2. The dual functionalM(l) is Gateaux differentiable in L2(γ) and
it’s derivative ∇M(l) satisfies the Lipschitz condition with the constant 1

r ; that
is, for all l1, l2 ∈ L2(γ), it holds that

‖∇M(l1)−∇M(l2)‖L2(γ) ≤
1

r
‖l1 − l2‖L2(γ)

and, moreover, ∇M(l) = m(l) ∀l ∈ L2(γ) (see Theorem 5 in [7]).

Since the gradient of the functionalM(l) satisfies the Lipschitz condition, the
dual problem (6) can be solved by using the gradient method for maximizing
a functional [7]

(7) ls+1 = ls + rm(ls), s = 0, 1, 2, . . . ,

where l0 ∈ L2(γ) is an arbitrary initial value, r > 0 is a constant and

m(ls) = ∇M(ls) = argmin
m∈L2(γ)

{

χ(m) +

∫

γ

lsmdΓ +
r

2

∫

γ

m2 dΓ

}

.

Statement 3. The sequence {ls} constructed by the gradient method (7) sat-

isfies the limit equality

lim
s→∞

‖m(ls)‖L2(γ) = 0

(see Theorem 7 in [7]).

The gradient method (7) can be written in following way (see [6])

(i) us+1 = argminv∈H1(Ωγ)

{

J(v) + 1
2r

∫

γ

(

((ls − r[v])+)2 − (ls)2
)

dΓ

}

,

(ii) ls+1 = ls + rmax

{

− [us+1],− ls

r

}

,

where l0 ∈ L2(γ).
From inequality (6) follows, that

M(ls) ≤ χ(0) = inf
v∈K

J(v), s = 1, 2, 3, . . . ,

or

χ(m(ls)) +

∫

γ

lsm(ls) dΓ +
r

2

∫

γ

m2(ls) dΓ ≤ χ(0), s = 1, 2, 3, . . . ,
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∫

γ

lsm(ls) dΓ ≤ χ(0)− χ(m(ls))− r

2

∫

γ

m2(ls) dΓ, s = 1, 2, 3, . . . .

Since lims→∞ χ(m(ls)) ≥ χ(0), then lims→∞

∫

γ
lsm(ls) dΓ ≤ 0.

Let us show, that lims→∞

∫

γ
lsm(ls) dΓ = 0. We suppose the contrary, that

is lims→∞

∫

γ l
sm(ls) dΓ = δ < 0. Then we can take such δ1, δ < δ1 < 0 and

number N , that
∫

γ l
sm(ls) dΓ < δ1 ∀s > N . We have

‖ls+1‖2L2(γ)
= ‖ls + rm(ls)‖2L2(γ)

= ‖ls‖2L2(γ)
+ 2r

∫

γ

lsm(ls) dΓ + r2‖m(ls)‖2L2(γ)

≤ ‖ls‖2L2(γ)
+ 2rδ1 + r2‖m(ls)‖2L2(γ)

.

Now from Statement 3 follows that under sufficiently large s the inequality
‖ls+1‖2L2(γ)

≤ ‖ls‖2L2(γ)
is correct. Then

lim
s→∞

∫

γ

lsm(ls) dΓ = lim
s→∞

∫

γ

lsm(ls) dΓ = 0.

It contradicts our assumption. It means that lims→∞

∫

γ
lsm(ls) dΓ = 0.

Let {lsj} be a subsequence of {ls}, such that

lim
s→∞

∫

γ

lsm(ls) dΓ = lim
j→∞

∫

γ

lsjm(lsj ) dΓ.

As the sequence {M(lsj )} is monotonously increasing [6] and limited below
by value χ(0), then

χ(0) ≥ lim
s→∞

(

χ(m(ls)) +

∫

γ

lsm(ls) dΓ +
r

2

∫

γ

m2(ls) dΓ

)

= lim
j→∞

(

χ(m(lsj )) +

∫

γ

lsjm(lsj ) dΓ +
r

2

∫

γ

m2(lsj ) dΓ

)

= lim
j→∞

χ(m(lsj )) ≥ χ(0) = inf
v∈K

J(v).

Thus for method (i), (ii) such limit equality is established

(8) lim
s→∞

M(ls) = J(u) = inf
v∈K

J(v).

From here the duality ratio follows for initial and dual problem

sup
l∈L2(γ)

M(l) = inf
v∈K

J(v).

3. Conclusion and discussion

The limit equality (8) is established under natural for crack problem (1)
condition that solution u belongs to space H1(Ωγ) only. In this case the dual
problem (6) may not have a solution, for example, if lims→∞ ‖ls‖L2(γ) = +∞.
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However, if the dual problem (6) has a solution, then {ls} is a bounded sequence
in L2(γ) [6, 7]. Together with statement 3 it means that

lim
s→∞

∫

γ

lsm(ls) dΓ = 0.

From here at once follows that method (i), (ii) converges according the initial
functional J(v), that is

lim
s→∞

χ(m(ls)) = lim
s→∞

J(us+1) = J(u).
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