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WEAK AND QUADRATIC HYPONORMALITY OF

2-VARIABLE WEIGHTED SHIFTS AND THEIR EXAMPLES

Chunji Li

Abstract. Recently, Curto, Lee and Yoon considered the properties
(such as, hyponormality, subnormality, and flatness, etc.) for 2-variable
weighted shifts and constructed several families of commuting pairs of
subnormal operators such that each family can be used to answer a con-
jecture of Curto, Muhly and Xia negatively. In this paper, we consider the
weak and quadratic hyponormality of 2-variable weighted shifts (W1,W2).
In addition, we detect the weak and quadratic hyponormality with some
interesting 2-variable weighted shifts.

1. Introduction and preliminaries

Let H be a complex Hilbert space and let L (H) be the algebra of bounded
operators on H. For S, T ∈ L (H), we denote the commutator of S and T

by [S, T ] := ST − TS. Let N (resp., Z+,R+,C) be the set of positive integers
(resp., nonnegative integers, nonnegative real numbers, complex numbers). For
n ≥ 1, we write H(n) for the orthogonal direct sum of H with itself n times.
For n-tuple T = (T1, . . . , Tn) of operators in L (H) , we write [T∗,T] ∈ L

(

H(n)
)

for the self-commutator of T, where (i, j)-entry [T∗,T]ij of [T∗,T] is
[

T ∗
j , Ti

]

.

We say that an n-tuple T = (T1, . . . , Tn) is (jointly hyponormal) if the operator
matrix

[T∗,T] =











[T ∗
1 , T1] [T ∗

2 , T1] · · · [T ∗
n , T1]

[T ∗
1 , T2] [T ∗

2 , T2] · · · [T ∗
n , T2]

...
...

. . .
...

[T ∗
1 , Tn] [T ∗

2 , Tn] · · · [T ∗
n , Tn]











is positive on H(n) ([5]). The n-tuple T is said to be normal if T is commuting
and each Ti is normal. And T is subnormal if T is restriction of a normal n-tuple
to a common invariant subspace. It is obvious that normal =⇒ subnormal
=⇒ hyponormal ([6]). The n-tuple T is (weakly) hyponormal if λ1T1+· · ·+λnTn
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is hyponormal for every λi ∈ C, i = 1, . . . , n ([8]). Because the structure of n-
tuple operators can be extended from the study of 2-tuple operators, many
operator theorists have concentrated their studies to the structure of n-tuple
operators (see [3], [4], [5], [6], [7], [9], [10], [11], [12], [13], etc.). Curto, Lee
and Yoon considered the properties (such as, hyponormality, subnormality,
flatness, etc.) for 2-variable weighted shifts and constructed several families of
commuting pairs of subnormal operators such that each family can be used to
answer a conjecture of Curto, Muhly and Xia negatively (see [3], [4], [5], [6],
[7], etc.). The present author considered the subnormal completion problem
by using the moment theory in [11]. In [12], one considered the expansivity
of 2-variable weighted shifts and obtained some related results. In this paper,
we discuss the weak and quadratic hyponormality of 2-variable weighted shifts
with some interesting examples.

Let C [z, w] be the set of two variables complex polynomials. A 2-tuple com-
muting operator (T1, T2) is weakly k-hyponormal if (p1 (T1, T2) , p2 (T1, T2)) is
hyponormal for all polynomials p1, p2 ∈ C [z, w] with deg p1, deg p2 ≤ k ∈
N. And 2-tuple commuting operator (T1, T2) is mono-weakly k-hyponormal

if p (T1, T2) is hyponormal for all polynomials p ∈ C [z, w] with deg p ≤ k

(see [9], [10]). Thus, for 2-tuple commuting operator (T1, T2), we know that
mono-weakly 1-hyponormal is just weakly hyponormal. For simplicity, we call
mono-weakly 2-hyponormal is quadratically hyponormal. For 2-tuple commut-
ing operator (T1, T2), it is well known that the hyponormality implies the weak
hyponormality (cf. [5]). Obviously, if (T1, T2) is quadratically hyponormal, then
(T1, T2) is weakly hyponormal. In terms of above discussions it is worthwhile
studying the weak and quadratic hyponormality of (T1, T2) .

We now discuss some basic construction for our purpose. Let H = ℓ2
(

Z2
+

)

be the usual Hardy space of square-summable complex sequences, where Z2
+ :=

Z+ × Z+. Consider a canonical orthonormal basis
{

e(i,j)
}

(i,j)∈Z
2
+

of ℓ2
(

Z2
+

)

.

Let α = {αk}k∈Z
2
+
, β = {βk}k∈Z

2
+

be two double-indexed positive bounded

sequences. The 2-variable weighted shift W = (Wα,Wβ) is defined by

(1.1) Wαek := αkek+ǫ1 and Wβek := βkek+ǫ2 , ∀k ∈ Z2
+,

where ǫ1 := (1, 0), ǫ2 := (0, 1) (see [6], [7]). Clearly, WαWβ = WβWα if and only
if βk+ǫ1αk = αk+ǫ2βk for all k ∈ Z2

+. We now consider the ordered orthonormal
basis E with the lexicographic order (i.e., (0, 0) , (0, 1) , (1, 0) , (0, 2) , (1, 1) , . . .)
in the indices of e(i,j), (i, j) ∈ Z2

+. According to (1,1), the shift Wα on ℓ2
(

Z2
+

)

can be represented by a matrix form

Wα
∼=

































0 0 0 0 · · ·
0 0 0 0 · · ·
α00 0 0 0 · · ·
0 0 0 0 · · ·
0 α01 0 0 · · ·
0 0 α10 0 · · ·
0 0 0 0 · · ·
0 0 0 α02

. . .
...

...
...

. . .
. . .

































,
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corresponding to the ordered basis E of ℓ2
(

Z2
+

)

(cf. [12]); note that the diag-
onal entries of the above matrix is zero and we denote if by “0” for reader’s
convenience. Similarly, the matrix form associated to the shift Wβ with respect
to E is

Wβ
∼=





























0 0 0 0 · · ·
β00 0 0 0 · · ·
0 0 0 0 · · ·
0 β01 0 0 · · ·
0 0 β10 0 · · ·
0 0 0 0 · · ·
0 0 0 β02

. . .
...

...
...

. . .
. . .





























.

The hyponormality of (Wα,Wβ) was characterized in [7], namely, it is hyponor-
mal if and only if

(

α2
k1+1,k2

− α2
k1,k2

αk1,k2+1βk1+1,k2 − αk1,k2βk1,k2

αk1,k2+1βk1+1,k2 − αk1,k2βk1,k2 β2
k1,k2+1 − β2

k1,k2

)

≥ 0

for all (k1, k2) ∈ Z2
+; this test for hyponormality is called “Six-point Test”

which will be used in this paper.
The paper consists of as following. In Section 2, we give the criteria of

weak and quadratic hyponormality for a pair of 2-variable weighted shifts.
In Section 3 we detect the weak and quadratic hyponormality with useful 2-
variable weighted shifts which have been studied by several operator theorists.

2. The criteria of weak and quadratic hyponormality

Let α = {αk}k∈Z
2
+
, β = {βk}k∈Z

2
+
be two double-indexed positive bounded

sequences and let (Wα,Wβ) be 2-variable weighted shifts. In this section, we
characterize the weak and quadratic hyponormality of (Wα,Wβ) . Firstly, we
discuss the weak hyponormality of (Wα,Wβ). By a direct computation, we get
that

[

(Wα + λWβ)
∗
,Wα + λWβ

]

= diag {Mj}∞j=0 ,

where M0 = (z00) and

(2.1) Mk =













z01 h01

h01 z1,k−1
. . .

. . .
. . . hk−1,1

hk−1,1 zk,0













, k ∈ N,

and

zij =
(

α2
ij − α2

i−1,j

)

+ |λ|2
(

β2
ij − β2

i,j−1

)

,

hij =

{

0 if j = 0,
λ (αijβi+1,j−1 − αi,j−1βi,j−1) if j ≥ 1.

Note that αij = 0 and βij = 0 for i < 0 or j < 0. We now obtain the following
proposition by some direct computations.
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Proposition 2.1. Let (Wα,Wβ) be a 2-variable weighted shifts with weight

sequences α and β. Then (Wα,Wβ) is weakly hyponormal if and only if Mk ≥ 0
for all k ∈ Z+.

Next we consider the quadratic hyponormality. Recall that 2-tuple com-
muting operator (T1, T2) is quadratically hyponormal if

(

T1, T2, T
2
1 , T1T2, T

2
2

)

is weakly hyponormal. We denote T := λ1T1 + λ2T2 + µ1T
2
1 + µ2T

2
2 + µ3T1T2.

Then (T1, T2) is quadratically hyponormal

⇐⇒ T is hyponormal

⇐⇒ [T∗,T] ≥ 0

⇐⇒
[

(

T1 + λ1T
2
1 + λ2T

2
2 + λ3T1T2

)∗
, T1 + λ1T

2
1 + λ2T

2
2 + λ3T1T2

]

≥ 0

=⇒
[

(

T1 + λ1T
2
1 + λ2T

2
2

)∗
, T1 + λ1T

2
1 + λ2T

2
2

]

≥ 0

for any λ1, λ2, µ1, µ2, µ3 ∈ C.
We remark that the above necessary conditions can be replaced by the nec-

essary and sufficient conditions for our key example in Section 3. So, in this
paper, we just simply say that (T1, T2) is quadratically hyponormal, if

[

(

T1 + λ1T
2
1 + λ2T

2
2

)∗
, T1 + λ1T

2
1 + λ2T

2
2

]

≥ 0, ∀λ1, λ2 ∈ C.

Now we consider 2-variable weighted shifts (Wα,Wβ) . By direct computa-
tions, we have

M :=
[

(

Wα + λ1W
2
α + λ2W

2
β

)∗
,Wα + λ1W

2
α + λ2W

2
β

]

=













































q00 0 r00 0 0 0 0 0 0 0 0 · · ·
0 q01 0 0 r01 0 0 0 0 0 0 · · ·
r̄00 0 q10 η02 0 r10 0 0 0 0 0 · · ·
0 0 η̄02 q02 0 δ02 0 r02 0 0 0 · · ·
0 r̄01 0 0 q11 0 η03 0 r11 0 0 · · ·
0 0 r̄10 δ̄02 0 q20 0 η12 0 r20 0 · · ·
0 0 0 0 η̄03 0 q03 0 δ03 0 0 · · ·
0 0 0 r̄02 0 η̄12 0 q12 0 δ12 η04 · · ·
0 0 0 0 r̄11 0 δ̄03 0 q21 0 0 · · ·
0 0 0 0 0 r̄20 0 δ̄12 0 q30 0 · · ·
0 0 0 0 0 0 0 η̄04 0 0 q04

. . .
...

...
...

...
...

...
...

...
...

...
...

. . .













































,

where

qij =
(

α2
ij − α2

i−1,j

)

+ |λ1|2
(

α2
ijα

2
i+1,j − α2

i−2,jα
2
i−1,j

)

+ |λ2|2
(

β2
ijβ

2
i,j+1 − β2

i,j−2β
2
i,j−1

)

,

rij = λ1αij

(

α2
i+1,j − α2

i−1,j

)

,
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δij = λ2 (αijβi+1,j−2βi+1,j−1 − αi,j−2βi,j−2βi,j−1) (j ≥ 2) ,

ηij = λ1λ2 (αijαi+1,jβi+2,j−2βi+2,j−1 − αi,j−2αi+1,j−2βi,j−2βi,j−1) (j ≥ 2) .

Note that αij = 0 and βij = 0 for i < 0 or j < 0.

Let dij = (i+ 1) + (j+1)(j+2)
2 and Mij be the upper-left dij × dij -submatrix

of M and let ∆ij := detMij . Let M
[1]
i,j be the submatrix of Mij such that its

entries are q⋆,k, r⋆,k and η⋆,k = 0, where k’s are odd numbers and ⋆ means a

nonnegative integer. And M
[2]
i,j be the submatrix of Mij such that its entries

are q⋆,k, r⋆,k and η02, where k’s are even numbers. For example, if j = 2k + 1,
then

M
[1]
m,2k+1 =























q01 r01
r̄01 q11 η03 r11

η̄03 q03
. . .

. . .

r̄11
. . .

. . .
. . . ∗

. . .
. . .

. . . ∗
∗ ∗ qm,2k+1























,

and if j = 2k, then

M
[2]
m,2k =























q00 r00
r̄00 q10 η02 r10

η̄02 q02 δ02
. . .

r̄10 δ̄02
. . .

. . . ∗
. . .

. . .
. . . ∗

∗ ∗ qm,2k























.

We now give the following key lemma.

Lemma 2.2. Under the above notation, we get

(i) ∆i,2k = detM
[2]
i,2k ·detM

[1]
i+1,2k−1 and ∆i,2k+1 = detM

[2]
i+1,2k ·detM

[1]
i,2k+1,

(ii) it holds that

detM
[1]
m,2k+1=







(q31q41 · · · · · q2k,1) · g[0]2k+1 ·
(

g
[1]
3 · · · · · g[1]2k−1

)

if m = 1,

(q31q41 · · · · · qm,2k+1−m) · g[0]2k−1 ·
(

g
[1]
3 · · · · · g[1]2k−1

)

if m 6= 1,

for k ≥ 2, where

g
[0]
l := q0,lq1,l − |r0,l|2 and g

[1]
l := −q0,l |r1,l|2 − q2,l |r0,l|2 + q0,lq1,lq2,l,

and

detM
[2]
m,2k=







(q30q40 · · · · · q2k,0) · g[0]2k ·
(

g
[1]
4 · · · · · g[1]2k−2

)

· ρ if m = 1,

(q30q40 · · · · · qm,2k−m) · g[0]2k−2 ·
(

g
[1]
4 · · · · · g[1]2k−2

)

· ρ if m 6= 1,
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for k ≥ 3, where

(2.2) ρ := det

















q00 r00 0 0 0 0
r̄00 q10 η02 0 0 0
0 η̄02 q02 δ02 r02 0
0 0 δ̄02 q20 0 0
0 0 r̄02 0 q12 r12
0 0 0 0 r̄12 q22

















.

We give a necessary condition of quadratic hyponormality of 2-variable
weighted shifts as following.

Proposition 2.3. Let (Wα,Wβ) be a 2-variable weighted shifts with weight

sequences α and β. If (Wα,Wβ) is quadratically hyponormal, then

F (t1, t2) := q02q20 − |δ02|2 , ∀t1 ≥ 0, t2 ≥ 0

with ti = |λi|2 , i = 1, 2.

Proof. In fact, F (t1, t2) = detM[4,6] = q02q20 − |δ02|2 . If (Wα,Wβ) is quadrat-
ically hyponormal, then F (t1, t2) ≥ 0, ∀t1 ≥ 0, t2 ≥ 0. �

According to Lemma 2.2, we obtain the following proposition.

Proposition 2.4. Let (Wα,Wβ) be a 2-variable weighted shifts with weight

sequences α and β. Then (Wα,Wβ) is quadratically hyponormal if and only if

M
[1]
m,2k+1 ≥ 0 and M

[2]
m,2k ≥ 0 for all m, k ∈ Z+.

3. Examples

For x, y ∈ (0, 1] , and k = (k1, k2) ∈ Z2
+, let

(3.1) α (k) :=







x if k1 = 0 and k2 = 0,
y if k1 = 0 and k2 ≥ 1,
1 if k1 ≥ 1 and k2 ≥ 0,

and

(3.2) β (k) :=







x if k1 = 0 and k2 = 0,
y if k1 ≥ 1 and k2 = 0,
1 if k1 ≥ 0 and k1 ≥ 1.

We now let (W1,W2) be the pair of 2-variable weighted shifts on ℓ2
(

Z2
+

)

defined
by (3.1) and (3.2), whose weight sequence is given by Fig. 1 as following (cf.
[7]).
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Fig. 1. Weight diagram of 2-variable weighted shifts
defined by (3.1) and (3.2).

Obviously W1W2 = W2W1. Furthermore, we have the following results.

Proposition 3.1. Let (W1,W2) be the 2-variable weighted shift with weight

sequences defined by (3.1) and (3.2). Then the following assertions hold.

(i) (W1,W2) is hyponormal if and only if 1− 2x2 + y2 ≥ 0.
(ii) (W1,W2) is subnormal if and only if x2y2 − 2x2 + 1 ≥ 0.
(iii) (W1,W2) is weakly hyponormal if and only if 2x2y2 − 2x2 + 1 ≥ 0 or

2x2y2 − 2x2 + 1 < 0 and
(

2y2 − 1
) (

2x2 − 1
) (

1− 2x2 + 2y2
)

≤ 0.

Proof. (i) According to the Six-point Test, we need to check the positivity of
the following four kinds 2× 2 matrices,

(

0 0
0 0

)

,

(

0 0
0 1− y

)

,

(

1− y 0
0 0

)

,

(

1− x2 y2 − x2

y2 − x2 1− x2

)

.

Since

det

(

1− x2 y2 − x2

y2 − x2 1− x2

)

=
(

1− y2
) (

1− 2x2 + y2
)

,

thus, all four matrices are positive if and only if 1− 2x2 + y2 ≥ 0.
(ii) See [7, Proposition 4.9].
(iii) Observe that (see Appendix)

M0 =
(

x2 |λ|2 + x2
)

, M1 =

( (

1− x2
)

|λ|2 + y2
(

y2 − x2
)

λ
(

y2 − x2
)

λ̄ 1− x2 + y2 |λ|2
)

,

M2 = diag
{

y2,
(

|λ|2 + 1
)

(

1− y2
)

, y2 |λ|2
}

,
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M3 = diag
{

y2, 1− y2, |λ|2
(

1− y2
)

, y2 |λ|2
}

,

and for k ≥ 4,

Mk = diag
{

y2, 1− y2, 0, . . . , 0, |λ|2
(

1− y2
)

, y2 |λ|2
}

.

If (W1,W2) is weakly hyponormal, then

detM1 =
(

y2 − x2y2
)

|λ|4+
(

2x2y2 − 2x2 + 1
)

|λ|2+
(

y2 − x2y2
)

≥ 0, ∀λ ∈ C.

Hence detM1 ≥ 0 if and only if 2x2y2 − 2x2 + 1 ≥ 0, or 2x2y2 − 2x2 + 1 < 0,
and ∆ ≤ 0, where ∆ is the discriminant for quadratic polynomial detM1 in

t = |λ|2 , i.e.,

(3.3) ∆ :=
(

2y2 − 1
) (

2x2 − 1
) (

1− 2x2 + 2y2
)

.

Conversely, if ∆ ≤ 0, then the block matrices Mk (k ∈ Z+) are all positive. By
Proposition 2.1, we know that (W1,W2) is weakly hyponormal. �

We now discuss the quadratic hyponormality of 2-variable weighted shift
(W1,W2) as above.

Theorem 3.2. The 2-variable weighted shift (W1,W2) with weight sequences

defined by (3.1) and (3.2) is quadratically hyponormal if and only if 2x2y2 −
2x2 + 1 ≥ 0 or 2x2y2 − 2x2 + 1 < 0 and ∆ ≤ 0, where ∆ is as (3.3).

Proof. (⇒) Since (W1,W2) is quadratically hyponormal, by Proposition 2.3,
we have (see Appendix)

F (t1, t2) := q02q20 − |δ02|2

= y2t21 + c1t1 + c2 ≥ 0, ∀t1 ≥ 0, t2 ≥ 0,

where

c1 =
(

1− x2 + y4
)

t2 + y2
(

2− x2
)

≥ 0,

c2 =
(

y2 − x2y2
)

t22 +
(

2x2y2 − 2x2 + 1
)

t2 +
(

y2 − x2y2
)

.

Thus c2 ≥ 0 if and only if 2x2y2 − 2x2 + 1 ≥ 0, or 2x2y2 − 2x2 + 1 < 0 and
∆ ≤ 0, where ∆ is as (3.3).

(⇐) To check the positivity of matrices M
[1]
m,2k+1 and M

[2]
m,2k (see Appendix),

we first consider the matricesM
[1]
m,2k+1. Let M

[∗,l]
†,♮ be the truncations to the first

l rows and columns of matrix M
[∗]
†,♮ and let ∆

[∗,l]
†,♮ = det

(

M
[∗,l]
†,♮

)

. If t1 = t2 = 0,

then M
[1]
m,2k+1 and M

[2]
m,2k are all diagonal matrices and positive. So we can
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assume that t1 > 0 or t2 > 0. We observe that

M
[1]
2,3 =

























q01 r01 0 0 0 0 0 0
r̄01 q11 0 r11 0 0 0 0
0 0 q03 0 r03 0 0 0
0 r̄11 0 q21 0 0 0 0
0 0 r̄03 0 q13 0 0 r13
0 0 0 0 0 q31 0 0
0 0 0 0 0 0 q05 0
0 0 0 0 r̄13 0 0 q23

























.

By Appendix, we know that ∆
[1,l]
2,3 > 0 for all l = 1, 2, . . . , 8. Thus M

[1]
2,3 is

positive. Similarly, for the matrix M
[1]
m,2k+1 (k ≥ 2) , we have

g
[0]
1 = y2t21 +

(

y2t2 − y4 + y2 + t2
)

t1 +
(

y2 − y4 + t22 + t2
)

> 0,

g
[0]
3 = y2t21 +

(

y2 − y4
)

t1 +
(

y2 − y4
)

≥ 0,

g
[0]
2k+1 = y2t21 +

(

y2 − y4
)

t1 +
(

y2 − y4
)

≥ 0,

g
[1]
1 =

(

y2 − y4
)

t31 + t2
(

y2 − y4 + 1
)

t21 + 2t2
(

t2 + y2 − y4
)

t1

+ t2
(

t2 + y2
) (

t2 + 1− y2
)

≥ 0,

g
[1]
2k+1 = y2

(

1− y2
)

t31 ≥ 0 (k ≥ 1) ,

by Lemma 2.2 and using the Nested determinant test ([1] or [2]), the matrices

M
[1]
m,2k+1 are all positive.

Next, we consider the matrices M
[2]
m,2k. Observe that

ρ (t1, t2) = x2
(

1− y2
)

f (t1, t2)

as in (2.2), where f (t1, t2) :=
∑6

i=0 bit
6−i
1 with

b0 = y2
(

1− x2
)

,

b1 =
(

−x2y2 − 2x2 + 3y2 + 1
)

t2,

b2 =
(

x2y6 − x2y4 + 2x2y2 − 6x2 − y6 + y4 + 4y2 + 3
)

t22 + 2y2
(

1− x2
)

t2,

b3 =
(

y2 − x2y2
)

t2 +
(

2x2y4 − 6x2 − 2y6 + y4 + 5y2 + 3
)

t32

+
(

4x2y6 − 2x2y4 − 3x2y2 − 2x2 − 6y6 + 5y4 + 4y2 + 1
)

t22,

b4 =
(

6x2y4 − 2x2y6 − 5x2y2 − 2x2 − 2y6 + 5y2 + 1
)

t42

+
(

5y2 − 5y4 + 1
) (

1− 2x2 + 2y2
)

t32

+
(

6x2y6 − 4x2y4 − 3x2y2 − 8y6 + 7y4 + 2y2
)

t22,

b5 =
(

2x2y4 − 3x2y2 − 2y6 + y4 + 2y2
)

t52

+
(

14x2y4 − 4x2y6 − 11x2y2 − 6y6 + y4 + 6y2
)

t42

+ 4y2
(

1− y2
) (

1− 2x2 + 2y2
)

t32 + 4y4
(

1− x2
) (

1− y2
)

t22,
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b6 = y4
(

1− x2
) (

1− y2
)

t62 + y2
(

1− y2
) (

1− 2x2 + 2y2
)

t52

+ 2y2
(

1− y2
) (

x2y2 − 2x2 + y2 + 1
)

t42

+ y2
(

1− y2
) (

1− 2x2 + 2y2
)

t32 + y4
(

1− x2
) (

1− y2
)

t22.

It is not difficult to show that bi ≥ 0 (i = 0, 1, 2, 3, 4, 5, 6) if the conditions in the
hypothesis are satisfied. Thus, ρ (t1, t2) ≥ 0 for all t1, t2 ∈ R+. Furthermore,

g
[0]
0 = x2t21 +

(

x2y2t2 − x4 + x2t2 + x2
)

t1 + x2 (t2 + 1)
(

y2t2 − x2 + 1
)

,

g
[1]
2 =

(

1− y2
)

y2t31 +
(

1− y2
) (

2y2 − y4 − x2 + 1
)

t2t
2
1

+ t2
(

1− y2
) ((

x2y2 − 2x2 − y4 + 2
)

t2 +
(

2y2 − 2y4
))

t1

+ t2 (t2 + 1)
(

1− y2
)2 (−x2t2 + t2 + y2

)

,

g
[1]
2k = t31y

2
(

1− y2
)

,

we know that g
[0]
0 , g

[1]
2 , . . . , g

[1]
2k are all positive. By Lemma 2.2 and using the

Nested determinant test, we can show that the matrices M
[2]
m,2k are all positive.

By Proposition 2.4, we know that (W1,W2) is quadratically hyponormal. �

In particular, if we let x = 1, y = a ∈ (0, 1] , then the weight sequence is the
following (cf. [5])

(3.4) α (k) :=

{

1 if k1 ≥ 1 or k2 = 0,
a if k1 = 0 and k2 ≥ 1,

and

(3.5) β (k) :=

{

1 if k1 = 0 or k2 ≥ 1,
a if k1 ≥ 1 and k2 = 0.

Let (W1,W2) be the pair of 2-variable weighted shifts on ℓ2
(

Z2
+

)

defined by
(3.4) and (3.5). By Proposition 3.1 and Theorem 3.2, we have the following
results.

Corollary 3.3. Let (W1,W2) be the 2-variable weighted shift with weight se-

quences defined by (3.4) and (3.5). Then the following assertions hold.

(i) (W1,W2) is hyponormal if and only if a = 1.
(ii) (W1,W2) is subnormal if and only if a = 1.

(iii) (W1,W2) is weakly hyponormal if and only if
√
2
2 ≤ a ≤ 1.

(iv) (W1,W2) is quadratically hyponormal if and only if
√
2
2 ≤ a ≤ 1.

Remark. The following two figures Fig. 2 and Fig. 3 provide the regions of sub-
normality, hyponormality, weak hyponormality and quadratic hyponormality
for the 2-variable weighted shift with weight sequences defined by (3.1) and
(3.2), from which we know the following relationship

subnormal
⇒
: hyponormal

⇒
: weakly or quadratically hyponormal,
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and we know that the regions of weak hyponormality and quadratic hyponor-
mality for the 2-variable weighted shift with weight sequences defined by (3.1)
and (3.2) are same. However, in general, the former contains the latter. So
we may try to find a 2-variable weighted shifts that the regions of weak and
quadratic hyponormality are different. We leave it to interesting readers.

Fig. 2. Case of 2x2y2 − 2x2 + 1 ≥ 0.

Fig. 3. Case of 2x2y2 − 2x2 + 1 < 0.

Acknowledgment. The author would like to thank the referee for the helpful
suggestions.
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4. Appendix

We give some exact values appeared in this paper for reader’s convenience.

I. zij , hij , qij , rij, δij, ηij in Section 3

z00 = x2 |λ|2 + x2,

z0k = y2 (∀k ≥ 1) ,

z10 = −x2 + y2 |λ|2 + 1,

z11 =
(

|λ|2 + 1
)

(

1− y2
)

,

z1k = 1− y2 (∀k ≥ 2) ,

z20 = y2 |λ|2 ,
z21 = |λ|2

(

1− y2
)

,

z2k = 0 (∀k ≥ 2) ,

zm0 = y2 |λ|2 ,
zm1 = |λ|2

(

1− y2
)

(∀m ≥ 2) ,
zmk = 0 (∀m ≥ 2, ∀k ≥ 2) .

hij =

{

λ
(

y2 − x2
)

for i = 0, j = 1,
0 otherwise.

q00 = x2 (1 + t1 + t2) ,
q01 = y2 + t1y

2 + t2,

q02 = y2 (1 + t1) +
(

1− x2
)

t2,

q0j = y2 + t1y
2 (j ≥ 3) ,

q10 = t1 + t2y
2 + 1− x2,

q11 =
(

1− y2
)

+ t1 + t2,

q12 =
(

1− y2
)

+ t1 + t2
(

1− y2
)

,

q1j =
(

1− y2
)

+ t1 (j ≥ 3) ,

q20 = t2y
2 +

(

1− x2
)

t1,

q21 = t1
(

1− y2
)

+ t2,

q22 =
(

1− y2
)

(t1 + t2) ,

q2j = t1
(

1− y2
)

(j ≥ 3) ,

qi0 = t2y
2,

qi1 = t2,

qi2 = t2
(

1− y2
)

, (i ≥ 3)
qij = 0 (i ≥ 3 and j ≥ 3) .

r00 = λ1x,

r0j = yλ1 (j ≥ 1) ,
r10 =

(

1− x2
)

λ1,

r1j = λ1

(

1− y2
)

(j ≥ 1) ,
rij = 0 (i ≥ 2 and j ≥ 0) .

ηij =

{

λ2

(

y2 − x2
)

for i = 0 and j = 2,
0 otherwise.
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δij =

{

λ1λ2

(

y2 − x2
)

for i = 0 and j = 2,
0 otherwise.

II. The determinants ∆
[1,l]
2,3 of matrix M

[1]
2,3 in Section 3

∆
[1,1]
2,3 = y2 + t2y

2 + t2,

∆
[1,2]
2,3 = y2t21 +

(

t2 + y2t2 + y2 − y4
)

t1 +
(

t22 + t2 + y2 − y4
)

,

∆
[1,3]
2,3 = (1 + t1) y

2∆
[1,2]
2,3 ,

∆
[1,4]
2,3 = (1 + t1) y

2g
[1]
1 ,

∆
[1,5]
2,3 = y2

(

t21 +
(

1− y2
)

(1 + t1)
)

g
[1]
1 ,

∆
[1,6]
2,3 = t2∆

[1,5]
2,3 ,

∆
[1,7]
2,3 = t2 (1 + t1) y

2∆
[1,5]
2,3 ,

∆
[1,8]
2,3 = t31t2 (1 + t1)

(

1− y2
)

y4g
[1]
1 ,

where

g
[1]
1 =

(

y2 − y4
)

t31 + t2
(

y2 − y4 + 1
)

t21 + 2t2
(

t2 + y2 − y4
)

t1

+ t2
(

t2 + y2
) (

t2 + 1− y2
)

.
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