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NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS

WITH MULTIPLE VALUES

Yuntong Li and Zhixiu Liu

Abstract. In this paper, we consider some normality criteria concerning
multiple values. Let F be a family of meromorphic functions defined in a
domain D. Let k be a positive integer and ψ(z) 6≡ 0,∞ be a meromorphic
function in D. If, for each f ∈ F and z ∈ D, (1) f(z) 6= 0, and all of

whose poles are multiple; (2) all zeros of f(k)(z)−ψ(z) have multiplicities
at least k + 3 in D; (3) all poles of ψ(z) have multiplicities at most k in
D, then F is normal in D.

1. Introduction and main results

LetD be a domain in C, and F be a family of meromorphic functions defined
in D. F is said to be normal in D, in the sense of Montel, if for any sequence
{fn} ⊂ F , there exists a subsequence {fnj

} such that fnj
converges spherically

locally uniformly in D, to a meromorphic function or ∞ (see [3, 5]).
We shall use the basic results and standard notations of Nevanlinna theory

(see [4] and [8]): T (r, f), m(r, f), N(r, f), . . .. Let f(z) be a transcendental
meromorphic function in the whose complex plane and k be a positive integer.
Then

(1) the Nevanlinna’s First Fundamental Theorem: T (r, f) = m(r, 1
f ) +

N(r, 1
f ) + S(r, f), where T (r, f)(= m(r, f) + N(r, f)) is Nevanlinna’s char-

acteristic function.
(2) the logarithmic derivative theorem: m(r, f

(k)

f ) = S(r, f).

We denote by S(r, f) any function satisfying

S(r, f) = o{T (r, f)}

as r → ∞, possibly a set of finite measure.
L. Yang [7, Theorem 2], M. Fang [2, Corollary 2] and H. Chen [1] proved

independently the following result.
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Theorem A. Let F be a family of meromorphic functions defined in a domain

D and let k be a positive integer. If for every f ∈ F , f(z) 6= 0 and all the roots

of f (k)(z) = 1 are of multiplicity > k + 4 +
[

2
k

]

in D, then F is normal.

Recently, L. Zhao [10] generalized Theorem A as follows.

Theorem B. Let F be a family of meromorphic functions defined in a domain

D. Let k, p be two positive integers and ψ(z)(6≡ 0) be a holomorphic function

in D, and all zeros of ψ(z) have multiplicities at most p in D. If, for each

f ∈ F and z ∈ D,

(1) f(z) 6= 0, and all poles of f(z) have multiplicities at least p+ 2 in D;
(2) all zeros of f (k)(z)−ψ(z) have multiplicities at least (k+p+2)(p+1)+1

in D;
(3) f(z) has at least one poles,

then F is normal in D.

A natural problem arises: What can we say if the holomorphic function ψ(z)
is meromorphic in Theorem B, and the multiplicities of zeros of f (k)(z)−ψ(z)
can be reduced? In this paper, we study the problem and obtain the following
result.

Theorem 1. Let F be a family of meromorphic functions defined in a domain

D. Let k be a positive integer and ψ(z)(6≡ 0,∞) be a meromorphic function in

D. If, for each f ∈ F and z ∈ D,

(1) f(z) 6= 0, and all of whose poles are multiple;
(2) all zeros of f (k)(z)− ψ(z) have multiplicities at least k + 3 in D;
(3) all poles of ψ(z) have multiplicities at most k in D,

then F is normal in D.

As an immediate consequence of Theorem 1, we have the following result.

Corollary. Let F be a family of meromorphic functions defined in a domain

D. Let k be a positive integer, and ψ(z)(6≡ 0) be a holomorphic function in D.

If, for each f ∈ F and z ∈ D,

(1) f(z) 6= 0, and all of whose poles are multiple;
(2) all zeros of f (k)(z)− ψ(z) have multiplicities at least k + 3 in D,

then F is normal in D.

Remark 1. Clearly, from Corollary, Theorem 1 generalizes and improves The-
orem B by allowing ψ(z) to be meromorphic.

Example 1. Let k be a positive integer, ∆ = {z : |z| < 1}, ψ(z) = 1
zk+2 , and

F = {fn(z) =
1

nz2
: z ∈ ∆ and n 6= (−1)k(k + 1)!}.

Clearly, fn(z) 6= 0 and all of whose poles are multiple. We also have f
(k)
n (z)−

ψ(z) = ( (−1)k(k+1)!
n −1) 1

zk+2 6= 0. Thus conditions (1) and (2) in Theorem 1 are
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satisfied. Set zn =
√

2
2 +

√

2
2 i

√
n

, we have lim
n→∞

zn = 0. Clearly, lim
n→∞

|f ′(zn)|
1+|f(zn)|

2 = ∞,

by Marty’s Theorem [5], we have that F is not normal at z0 = 0.

Remark 2. The above example shows that the restriction on the multiplicities
of the poles of ψ(z) in Theorem 1 is indispensable comparing to the holomorphic
function ψ(z) in Corollary.

2. Some lemmas

The well-known Zalcman’s lemma is a very important tool in the study of
normal families. It has also undergone various extensions and improvements.
The following is one up-to-date local version for f(z) 6= 0, which is due to Xue
and Pang [6] and Zalcman [9].

Lemma 1. Let F be a family of meromorphic functions on a domain D such

that f(z) 6= 0 and all poles of functions in f have multiplicity greater than or

equal to j. Let α be a real number satisfying −∞ < α < j. Then F is not

normal in any neighborhood of z0 ∈ D, if and only if there exist

(a) points zn, zn → z0;
(b) functions fn ∈ F ; and
(c) positive numbers ρn → 0+ such that ραnfn(zn + ρnξ) = gn(ξ) → g(ξ)

locally uniformly with respect to the spherical metric, where g(ξ) is a noncon-

stant meromorphic function on C. Moreover, the order of g(ξ) is less than 2

and the poles of g(ξ) are of multiplicity ≥ j.

Here, as usual, g#(ξ) =
|g′(ξ)|

1+|g(ξ)|2
is the spherical derivative.

Lemma 2 (See [10, Lemma 2.2]). Let F be a family of meromorphic functions

defined in a domain D and k be a positive integer, and let b(z)(6= 0), a0(z),
a1(z), . . . , ak−1(z) be analytic functions in D. If, for every function f ∈ F , f 6=
0 and all poles of f(z) are multiple, and all zeros of f (k)(z)+ak−1(z)f

(k−1)(z)+
· · · + a1(z)f

′(z) + a0(z)f(z) − b(z) have multiplicity at least k + 3, then F is

normal in D.

Lemma 3. Let k > 0, l ≥ 0 be two integers, and let f(z) be a non-constant

rational function. If f(z) 6= 0, and all poles of f(z) are multiple in C, then

f (k)(z)− zl has at least one zero which has multiplicity ≤ k + 2 in C.

Proof. We may assume that all zeros of f (k)(z)− zl have multiplicities at least
k + 3. Since f(z) 6= 0, we can deduce that f(z) is a non-polynomial rational
and has the following form

(2.3.1) f(z) =
A

(z − α1)n1(z − α2)n2 · · · (z − αt)nt
,

where A is a non-zero constant and nj > 2 (j = 1, 2, . . . , t) are integers.
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By mathematical induction, from (2.3.1), we have

(2.3.2) f (k)(z) =
gk(t−1)(z)

(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
,

where gk(t−1)(z) is a polynomial.
We use deg(g(z)) to denote the degree of a polynomial and easily obtain

that

(2.3.3) deg(gk(t−1)(z)) = k(t− 1).

Because all zeros of f (k)(z)− zl are of multiplicity ≥ k + 3 in C, so we can
get

(2.3.4) f (k)(z)− zl = B
(z − β1)

m1(z − β2)
m2 · · · (z − βs)

ms

(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
,

where B is a non-zero constant and mi > k + 3 (i = 1, 2, . . . , s) are integers.
For simplicity, we denote

(2.3.5) m1 +m2 + · · ·+ms =M ≥ (k + 3)s,

(2.3.6) n1 + n2 + · · ·+ nt = N ≥ 2t.

From (2.3.4), we have s ≥ 1 and M = N + kt+ l ≥ 2t+ kt+ l, thus we can
get

(2.3.7) t ≤ M − l

2 + k
.

From (2.3.2) and (2.3.4) we have

(2.3.8)
f (k)(z)

zl
=

gk(t−1)(z)

zl(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
,

(2.3.9)
f (k)(z)

zl
− 1 = B

(z − β1)
m1(z − β2)

m2 · · · (z − βs)
ms

zl(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
.

We distinguish the following two cases.
Case 1. Assume that α1α2 · · ·αt 6= 0.

From (2.3.8) and (2.3.9), by taking derivative once, we derive

(2.3.10) (
f (k)(z)

zl
)′ =

gk(t−1)+t(z)

zl+1(z − α1)n1+k+1(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where gk(t−1)+t(z) is a polynomial and easily obtained that deg(gk(t−1)+t(z)) =
k(t− 1) + t.

(2.3.11) (
f (k)(z)

zl
)′ =

(z − β1)
m1−1(z − β2)

m2−1 · · · (z − βs)
ms−1gs+t(z)

zl+1(z − α1)n1+k+1(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where gs+t(z) is a polynomial.
By comparing the above equations, we deduce that

M − s ≤ deg(gk(t−1)+t(z)) = k(t− 1) + t = (k + 1)t− k
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i.e.,

(2.3.12) t ≥ M + k − s

k + 1
.

By (2.3.7) and (2.3.12), we get M+k−s
k+1 ≤ M−l

2+k . Through a simple calculation,
we have

M ≤ (2 + k)(s− k)− (k + 1)l < (k + 2)s.

Note that s ≥ 1, so the above inequality contradicts M ≥ (k + 3)s.
Case 2. Assume that α1α2 · · ·αt = 0.

Without loss of generality, we may assume α1 = 0. From (2.3.8) and (2.3.9),
we have

(2.3.10)′ (
f (k)(z)

zl
)′ =

g(k+1)(t−1)(z)

zn1+k+l+1(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where g(k+1)(t−1)(z) is a polynomial and easily obtained that deg(g(k+1)(t−1)(z))
= (k + 1)(t− 1).

(2.3.11)′ (
f (k)(z)

zl
)′ =

(z − β1)
m1−1(z − β2)

m2−1 · · · (z − βs)
ms−1gs+t−1(z)

zn1+k+l+1(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where gs+t−1(z) is a polynomial.
Proceeding as in the proof for Case 1, we have a contradiction.
This completes the proof of Lemma 3. �

Lemma 4. Let k > 0, 0 ≤ l ≤ k be two integers, and let f(z) be a non-constant

rational function. If f(z) 6= 0, and all poles of f(z) are multiple in C, then

f (k)(z)− 1
zl

has at least one zero which has multiplicity ≤ k + 2 in C.

Proof. We may assume that all zeros of f (k)(z)− 1
zl

have multiplicities at least
k + 3. Since f(z) 6= 0, we can deduce that f(z) is a non-polynomial rational
function and has the following form

(2.4.1) f(z) =
A

(z − α1)n1(z − α2)n2 · · · (z − αt)nt
,

where A is a non-zero constant and nj > 2 (j = 1, 2, . . . , t) are integers.
By mathematical induction, from (2.4.1), we have

(2.4.2) f (k)(z) =
gk(t−1)(z)

(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
,

where gk(t−1)(z) is a polynomial.
We use deg(g(z)) to denote the degree of a polynomial and easily obtain

that

(2.4.3) deg(gk(t−1)(z)) = k(t− 1).

We distinguish the following two cases.
Case 1. Assume that α1α2 · · ·αt 6= 0.
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From (2.4.2), we have
(2.4.4)

f (k)(z)− 1

zl
=
gk(t−1)(z)z

l − (z − α1)
n1+k(z − α2)

n2+k · · · (z − αt)
nt+k

zl(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
.

Since all zeros of f (k)(z)− 1
zl

are of multiplicity ≥ k+3 in C, so we can get

(2.4.5) f (k)(z)− 1

zl
= B

(z − β1)
m1(z − β2)

m2 · · · (z − βs)
ms

zl(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
,

where B is a non-zero constant and mi > k + 3 (i = 1, 2, . . . , s) are integers.
For simplicity, we denote

(2.4.6) m1 +m2 + · · ·+ms =M ≥ (k + 3)s,

(2.4.7) n1 + n2 + · · ·+ nt = N ≥ 2t.

From (2.4.2) and (2.4.5) we have

(2.4.8) zlf (k)(z) =
zlgk(t−1)(z)

(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
=
p(z)

q(z)
,

(2.4.9) zlf (k)(z)− 1 = B
(z − β1)

m1(z − β2)
m2 · · · (z − βs)

ms

(z − α1)n1+k(z − α2)n2+k · · · (z − αt)nt+k
.

We know l ≤ k and deg(gk(t−1)(z)) = k(t − 1), we get deg(p(z)) ≤ kt and
deg(q(z)) ≥ kt+2t, so deg(q(z)) > deg(p(z)). Combining this with (2.4.9), we
have s ≥ 1. It follows from (2.4.9) that

M = N + kt ≥ 2t+ kt

i.e.,

(2.4.10) t ≤ M

2 + k
.

We derive from (2.4.8) and (2.4.9)

(2.4.11) (zlf (k)(z))′ =
g(k+1)(t−1)+l(z)

(z − α1)n1+k+1(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where g(k+1)(t−1)+l(z) is a polynomial and easily obtained that

deg(g(k+1)(t−1)+l(z)) = (k + 1)(t− 1) + l.

(2.4.12) (zlf (k)(z))′ =
(z − β1)

m1−1(z − β2)
m2−1 · · · (z − βs)

ms−1gs+t−1(z)

(z − α1)n1+k+1(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where gs+t−1(z) is a polynomial.
We obtain from (2.4.11) and (2.4.12) that

M − s ≤ (k + 1)(t− 1) + l.
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So

(2.4.13) t ≥ M + (k + 1)− s− l

k + 1
.

The inequality (2.4.10) and (2.4.13) imply M+(k+1)−s−l
k+1 ≤ M

2+k . Through a
simple calculation, note that l ≤ k and s ≥ 1, we have

M ≤ (2 + k)(s+ l − k − 1) ≤ (2 + k)(s− 1)

which is a contradiction.
Case 2. Assume that α1α2 · · ·αt = 0.

Without loss of generality, we may assume α1 = 0. We derive from (2.4.8)
and (2.4.9)

(2.4.10)′ (zlf (k)(z))′ =
g(k+1)(t−1)(z)

zn1+k+1−l(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where g(k+1)(t−1)(z) is a polynomial and easily obtained that deg(g(k+1)(t−1)(z))
= (k + 1)(t− 1).

(2.4.11)′ (zlf (k)(z))′ =
(z − β1)

m1−1(z − β2)
m2−1 · · · (z − βs)

ms−1gs+t−1(z)

zn1+k+1−l(z − α2)n2+k+1 · · · (z − αt)nt+k+1
,

where gs+t−1(z) is a polynomial.
We can arrive at a contradiction by using the same argument as in the proof

for Case 1.
The proof is complete. �

Lemma 5. Let k > 0, l ≥ −k be two integers, and let f(z) be a non-constant

function. If f(z) 6= 0, and all poles of f(z) are multiple in C, then f (k)(z)− zl

has at least one zero which has multiplicity ≤ k + 2 in C.

Proof. We may assume that all zeros of f(z) have multiplicities at least k + 3.
The Lemma 3 and Lemma 4 imply that f(z) is a transcendental function. We
know

1

f
=
f (k)

zlf
− (z−lf (k))′

f

z−lf (k) − 1

(z−lf (k))′
.

Therefore

m(r,
1

f
) ≤ m(r,

f (k)

f
) +m(r, z−l) +m(r,

(z−lf (k))′

z−lf
z−l)

+m(r,
z−lf (k) − 1

(z−lf (k))′
) + log 2

≤ m(r,
z−lf (k) − 1

(z−lf (k))′
) + S(r, f).

Combining

m(r,
z−lf (k) − 1

(z−lf (k))′
) = m(r,

(z−lf (k))′

z−lf (k) − 1
) +N(r,

(z−lf (k))′

z−lf (k) − 1
)
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−N(r,
z−lf (k) − 1

(z−lf (k))′
) +O(1)

≤ S(r, f) +N(r, (z−lf (k))′) +N(r,
1

z−lf (k) − 1
)

−N(r,
1

(z−lf (k))′
)−N(r, z−lf (k) − 1)

≤ N(r, z−lf (k)) +N(r,
1

z−lf (k) − 1
) + S(r, f)

≤ N(r, f) +N(r,
1

f (k) − zl
) + S(r, f)(2.5.1)

with

N(r,
1

f
) = 0.

We get

T (r, f) = m(r,
1

f
) +N(r,

1

f
) + S(r, f)

≤ N(r,
1

f
) +N(r, f) +N(r,

1

f (k) − zl
) + S(r, f)

≤ N(r, f) +
1

k + 3
N(r,

1

f (k) − zl
) + S(r, f)

≤ N(r, f) +
1

k + 3
T (r, f (k)) + S(r, f)

≤ N(r, f) +
1

k + 3
T (r, f) +

k

k + 3
N(r, f) + S(r, f)

≤ (1 +
k

k + 3
)
1

2
N(r, f) +

1

k + 3
T (r, f) + S(r, f)

≤ 2k + 3

2(k + 3)
N(r, f) +

1

k + 3
T (r, f) + S(r, f)

≤ 2k + +5

2(k + 3)
T (r, f) + S(r, f)

≤ 2k + 5

2k + 6
T (r, f) + S(r, f)

< T (r, f) + S(r, f)

which is impossible. This completes the proof of Lemma 5. �

Lemma 6. Let F be a family of meromorphic functions defined in a domain

D. Let k be a integer, and let ψn(z) be a sequence of holomorphic functions

on D such that ψn(z) → ψ(z) locally uniformly on D, where ψ(z)(6= 0) is a

holomorphic on D. If, for each f ∈ F and z ∈ D,

(1) f(z) 6= 0, and all poles of f(z) are multiple in D;
(2) all zeros of f (k)(z)− ψn(z) have multiplicities at least k + 3 in D,
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then F is normal in D.

Proof. Suppose that F is not normal at z0 ∈ D. By Lemma 1, there exist a
sequence of functions fn ∈ F , a sequence of complex numbers zn → z0 and a
sequence of positive numbers ρn → 0+ such that

(2.6.1) gn(ξ) = ρ−kn fn(zn + ρnξ) → g(ξ)

spherically uniformly on compact subsets of C, where g(ξ) is a non-constant
meromorphic function in C. Hurwitz’s theorem implies that g(ξ) 6= 0 and all
poles of g(ξ) are multiple.

From (2.6.1), we deduce that

g(k)n (ξ) = f (k)
n (zn + ρnξ) → g(k)(ξ)

spherically uniformly on every compact subset of C which contains no pole of
g(ξ).

Since g
(k)
n (ξ) − ψn(zn + ρnξ) = f

(k)
n (ξ) − ψn(zn + ρnξ) → g(k)(ξ) − ψ(z0).

Hurwitz’s theorem implies that all zeros of g(k)(ξ) − ψ(z0) have multiplicities
at least k + 3. It follows from Lemma 5 (for l = 0) that g(ξ) is a constant,
which contradicts the fact that g(ξ) is a non-constant meromorphic function.
Lemma 6 is proved. �

3. Proof of Theorem 1

Without loss of generality, we may assume that D = ∆ = {z : |z| < 1}, and
ψ(z) = zmφ(z) (z ∈ ∆),

where m is a integer with m ≥ −k, φ(0) = 1, φ(z) 6= 0,∞ on ∆′ = {z : 0 <
|z| < 1}.

Ifm = 0, from Theorem 1, we have that ψ(z)(6= 0) is a holomorphic function.
By Lemma 2, Theorem 1 is proved. Since normality is local property, we only
need to prove that F is normal at z = 0 for m 6= 0.

We distinguish two cases:
Case 1. m < 0.

By Lemma 1, there exist a sequence of functions fn ∈ F , a sequence of
complex numbers zn → 0, and a sequence of positive numbers ρn → 0+, such
that

(3.1) Wn(ξ) = ρ−k−mn fn(zn + ρnξ) →W (ξ)

spherically uniformly on compact subsets of C, where W (ξ) is a non-constant
meromorphic function on C. Hurwitz’s theorem implies that W (ξ) 6= 0.

We now consider two subcases:
Case 1.1. zn/ρn → ∞.

Set ωn(ξ) = z−m−k
n

fn(zn + znξ) = z−m−k
n

fn(zn(1 + ξ)). Clearly, ωn(ξ) 6= 0
and all poles of ωn(ξ) are multiple. From (3.1), we get

ω(k)
n

(ξ)− (1 + ξ)mφ(zn(1 + ξ))
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= z−m
n

[

f (k)
n

(zn(1 + ξ))− (zn(1 + ξ))mφ(zn(1 + ξ))
]

= z−m
n

[

f (k)
n

(zn(1 + ξ))− ψ(zn(1 + ξ))
]

.

Since zn → 0, then there exists a natural number N such that, for every
natural number n > N , we have |zn| < 1

2 . By the assumption of the theorem,

we have that all zeros of ω(k)
n

(ξ) − (1 + ξ)mφ(zn(1 + ξ)) have multiplicities
at least k + 3 in ∆ for n > N . On the other hand, (1 + ξ)mφ(zn(1 + ξ)) is
holomorphic in ∆ for n > N , and

(1 + ξ)mφ(zn(1 + ξ)) → (1 + ξ)m(6= 0)

for ξ ∈ ∆. Then, by Lemma 6, {ωn(ξ) : n > N} is normal in ∆.
Hence, we can find a subsequence {ωnj

(ξ)} ⊂ {ωn(ξ) : n > N}, and a
function ω(z) such that

(3.2) ωnj
(ξ) = z−m−k

nj
fnj

(znj
(1 + ξ)) → ω(z)

spherically locally uniformly on ∆.
If ω(0) 6= ∞, from (3.1) and (3.2), and noting that zn/ρn → ∞, we have

W (m+k)(ξ) = lim
j→∞

f (m+k)
nj

(znj
+ ρnj

ξ))

= lim
j→∞

f (m+k)
nj

(znj
(1 +

ρnj

znj

ξ))

= lim
j→∞

ω(m+k)
nj

(
ρnj

znj

ξ) = ω(m+k)(0).

This implies thatW (m+k)(ξ) is a finite constant, and thenW (ξ) is a polyno-
mial. But this is impossible sinceW (ξ) is a non-constant meromorphic function
and W (ξ) 6= 0.

If ω(0) = ∞. From (3.3), we have

z−m−k
nj

fnj
(znj

+ ρnj
ξ) = z−m−k

nj
fnj

(znj
(1 +

ρnj

znj

ξ))

= ωnj
(
ρnj

znj

ξ) → ω(0) = ∞

and hence

W (ξ) = lim
j→∞

ρ−k−mnj
fnj

(znj
+ρnj

ξ) = lim
j→∞

(
znj

ρnj

)k+mz−m−k
nj

fnj
(znj

+ρnj
ξ) = ∞

that is, W (ξ) ≡ ∞, a contradiction.
Case 1.2. zn/ρn → α, a finite complex number. We have

W (k)
n (ξ)− ρ−mn (zn + ρnξ)

mφ(zn + ρnξ) →W (k)(ξ) − (α+ ξ)m

on C{−α}, and

W (k)
n (ξ)− ρ−mn (zn + ρnξ)

mφ(zn + ρnξ) = ρ−mn (f (k)
n (zn + ρnξ)− ψ(zn + ρnξ)).
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Hurwitz’s theorem implies that all zeros ofW (k)(ξ)−(α+ξ)m have multiplicities
at least k + 3. It follows from Lemma 5 that W (ξ) must be a constant, a
contradiction.

Case 2. m > 0.
Consider the family G = {g(z) = f(z)

ψ(z) : f ∈ F , z ∈ ∆}. Since f 6= 0 for

f ∈ F , we have that g(0) = ∞ for each g ∈ G.
We first prove that G is normal in ∆. Suppose, on the contrary, that G is

not normal at z0 = 0. By Lemma 1, there exist a sequence of functions gn ∈ G,
a sequence of complex numbers zn → 0, and a sequence of positive numbers
ρn → 0+, such that

Gn(ξ) = ρ−kn gn(zn + ρnξ) → G(ξ)

spherically uniformly on compact subsets of C, where G(ξ) is a non-constant
meromorphic function on C. Hurwitz’s theorem implies that G(ξ) 6= 0.

We now consider two subcases:
Case 2.1. zn/ρn → ∞.

By simple calculations, we have

g(k)n (z) =
f
(k)
n (z)

ψ(z)
−

k
∑

j=1

(

k

j

)

g(k−j)n (z)
ψ(j)(z)

ψ(z)

=
f
(k)
n (z)

ψ(z)
−

k
∑

j=1

[

(

k

j

)

g(k−j)n (z)

j
∑

i=0

Aji
1

zj−i
φ(i)(z)

φ(z)

]

,(3.3)

where Ajj = 1, Aji = m(m− 1) · · · (m− j+ i+1)

(

j

i

)

if m ≥ j, and Aji = 0

if 1 ≤ m < j for i = 0, 1, . . . , j − 1.
Thus, from (3.3), we have

G(k)
n (ξ) = g(k)n (zn + ρnξ)

=
f
(k)
n (zn + ρnξ)

ψ(zn + ρnξ)

−
k

∑

j=1

[

(

k

j

)

g(k−j)n (zn + ρnξ)

j
∑

i=0

Aji
1

(zn + ρnξ)j−i
φ(i)(zn + ρnξ)

φ(zn + ρnξ)

]

=
f
(k)
n (zn + ρnξ)

ψ(zn + ρnξ)

−
k

∑

j=1

[

(

k

j

)

g
(k−j)
n (zn + ρnξ)

ρ
j
n

j
∑

i=0

Aji
1

(zn/ρn + ξ)j−i
ρinφ

(i)(zn + ρnξ)

φ(zn + ρnξ)

]

.

On the other hand, we have

lim
n→∞

1

(zn/ρn + ξ)
= 0
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and

lim
n→∞

ρinφ
(i)(zn + ρnξ)

φ(zn + ρnξ)
= 0

for i ≥ 1. Noting that g
(k−j)
n (zn + ρnξ)/ρ

j
n is locally bounded on C minus

the set of poles of G(ξ) since gn(zn + ρnξ)/ρ
k
n → G(ξ). Therefore, on every

compact subset of C which contains no poles of G(ξ), we have

f
(k)
n (zn + ρnξ)

ψ(zn + ρnξ)
→ G(k)(ξ)

thus
f
(k)
n (zn + ρnξ)− ψ(zn + ρnξ)

ψ(zn + ρnξ)
→ G(k)(ξ)− 1.

Noting that ψ(zn+ρnξ) has only one zero ξ = − zn
ρn

→ ∞, by the assumption

of theorem, we have that all poles of G(ξ) are multiple. Since all zeros of

f
(k)
n (zn + ρnξ) − ψ(zn + ρnξ) have multiplicities at least k + 3, and It follows
from Lemma 5 (for l = 0) that G(ξ) must be a constant, which contradicts the
fact that G(ξ) is a non-constant meromorphic function.

Case 2.2. zn/ρn → α, a finite complex number. We have

ρ−kn gn(ρnξ) = ρ−kn gn(zn + ρn(ξ − zn/ρn)) = Gn(ξ − zn/ρn) → G(ξ − α)

spherically uniformly on compact subsets of C. Clearly, G(ξ −α) 6= 0, and the
pole of G(ξ − α) at ξ = 0 has multiplicity at least m. Now

(3.4) Fn(ξ) =
fn(ρnξ)

ρk+mn

=
fn(ρnξ)

ρknψ(ρnξ)

ψ(ρnξ)

ρmn
=
gn(ρnξ)

ρkn

ψ(ρnξ)

ρmn
.

Noting that ψ(ρnξ)
ρmn

→ ξm, we get

Fn(ξ) → ξmG(ξ − α) = F (ξ)

spherically uniformly on compact subsets of C. Since the pole of G(ξ − α) at
ξ = 0 has multiplicity at least m, we have F (0) 6= 0, hence F (ξ) 6= 0.

From (3.4), we have

(3.5)
f
(k)
n (ρnξ)− ψ(ρnξ)

ρmn
→ F (k)(ξ)− ξm.

By the assumption of Theorem and (3.5), Hurwitz’s theorem implies that all
zeros of F (k)(ξ)− ξm have multiplicities at least k+ 3. It follows from Lemma
5 that F (ξ) must be a constant, a contradiction.

We thus have proved that G is normal in ∆. Thus the family G is equicontin-
uous on ∆ with respect to the spherical distance. We see that fn(z) and ψ(z)
have no common zeros. On the other hand, g(0) = ∞ for each g ∈ G, so there
exists δ > 0 such that |g(z)| ≥ 1 for all g ∈ G and each z ∈ ∆δ = {z : |z| < δ}.
Suppose that F is not normal at z = 0. Since F is normal in ∆′

δ, the family
F1 = { 1

f : f ∈ F} is normal in ∆′
δ, but it is not normal at z = 0. Then
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there exists a sequence { 1
fn
} ⊂ F1 which converges locally uniformly in ∆′

δ,

but not in ∆δ. Noting that fn 6= 0 in ∆, it follows that 1
fn

is holomorphic

in ∆ for each n. If 1
fn

converges a analytic function locally uniformly in ∆′,

by maximum modulus principle, we have that 1
fn

is locally bounded uniformly

on ∆, which contradicts the assumption that F1 is not normal at z = 0. So
we have 1

fn
→ ∞ in ∆′. Thus fn → 0 converges locally uniformly in ∆′, and

hence so does {gn} ⊂ G, where gn = fn/ψ, which contradicts |g(z)| ≥ 1 for
z ∈ ∆δ = {z : |z| < δ}. Thus F is normal in D.

This proves the theorem.
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