NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WITH MULTIPLE VALUES

Yuntong Li and Zhixiu Liu

Abstract

In this paper, we consider some normality criteria concerning multiple values. Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let k be a positive integer and $\psi(z) \not \equiv 0, \infty$ be a meromorphic function in D. If, for each $f \in \mathcal{F}$ and $z \in D$, (1) $f(z) \neq 0$, and all of whose poles are multiple; (2) all zeros of $f^{(k)}(z)-\psi(z)$ have multiplicities at least $k+3$ in D; (3) all poles of $\psi(z)$ have multiplicities at most k in D, then \mathcal{F} is normal in D.

1. Introduction and main results

Let D be a domain in \mathbb{C}, and \mathcal{F} be a family of meromorphic functions defined in $D . \mathcal{F}$ is said to be normal in D, in the sense of Montel, if for any sequence $\left\{f_{n}\right\} \subset \mathcal{F}$, there exists a subsequence $\left\{f_{n_{j}}\right\}$ such that $f_{n_{j}}$ converges spherically locally uniformly in D, to a meromorphic function or ∞ (see $[3,5]$).

We shall use the basic results and standard notations of Nevanlinna theory (see [4] and [8]): $T(r, f), m(r, f), N(r, f), \ldots$ Let $f(z)$ be a transcendental meromorphic function in the whose complex plane and k be a positive integer. Then
(1) the Nevanlinna's First Fundamental Theorem: $T(r, f)=m\left(r, \frac{1}{f}\right)+$ $N\left(r, \frac{1}{f}\right)+S(r, f)$, where $T(r, f)(=m(r, f)+N(r, f))$ is Nevanlinna's characteristic function.
(2) the logarithmic derivative theorem: $m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)$.

We denote by $S(r, f)$ any function satisfying

$$
S(r, f)=o\{T(r, f)\}
$$

as $r \rightarrow \infty$, possibly a set of finite measure.
L. Yang [7, Theorem 2], M. Fang [2, Corollary 2] and H. Chen [1] proved independently the following result.

Received March 10, 2016; Revised August 16, 2016.
2010 Mathematics Subject Classification. 30D45.
Key words and phrases. meromorphic function, multiple value, normal family.

Theorem A. Let \mathcal{F} be a family of meromorphic functions defined in a domain D and let k be a positive integer. If for every $f \in \mathcal{F}, f(z) \neq 0$ and all the roots of $f^{(k)}(z)=1$ are of multiplicity $>k+4+\left[\frac{2}{k}\right]$ in D, then \mathcal{F} is normal.

Recently, L. Zhao [10] generalized Theorem A as follows.
Theorem B. Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let k, p be two positive integers and $\psi(z)(\not \equiv 0)$ be a holomorphic function in D, and all zeros of $\psi(z)$ have multiplicities at most p in D. If, for each $f \in \mathcal{F}$ and $z \in D$,
(1) $f(z) \neq 0$, and all poles of $f(z)$ have multiplicities at least $p+2$ in D;
(2) all zeros of $f^{(k)}(z)-\psi(z)$ have multiplicities at least $(k+p+2)(p+1)+1$ in D;
(3) $f(z)$ has at least one poles,
then \mathcal{F} is normal in D.
A natural problem arises: What can we say if the holomorphic function $\psi(z)$ is meromorphic in Theorem B, and the multiplicities of zeros of $f^{(k)}(z)-\psi(z)$ can be reduced? In this paper, we study the problem and obtain the following result.

Theorem 1. Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let k be a positive integer and $\psi(z)(\not \equiv 0, \infty)$ be a meromorphic function in D. If, for each $f \in \mathcal{F}$ and $z \in D$,
(1) $f(z) \neq 0$, and all of whose poles are multiple;
(2) all zeros of $f^{(k)}(z)-\psi(z)$ have multiplicities at least $k+3$ in D;
(3) all poles of $\psi(z)$ have multiplicities at most k in D,
then \mathcal{F} is normal in D.
As an immediate consequence of Theorem 1, we have the following result.
Corollary. Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let k be a positive integer, and $\psi(z)(\equiv \equiv 0)$ be a holomorphic function in D. If, for each $f \in \mathcal{F}$ and $z \in D$,
(1) $f(z) \neq 0$, and all of whose poles are multiple;
(2) all zeros of $f^{(k)}(z)-\psi(z)$ have multiplicities at least $k+3$ in D, then \mathcal{F} is normal in D.

Remark 1. Clearly, from Corollary, Theorem 1 generalizes and improves Theorem B by allowing $\psi(z)$ to be meromorphic.
Example 1. Let k be a positive integer, $\Delta=\{z:|z|<1\}, \psi(z)=\frac{1}{z^{k+2}}$, and

$$
\mathcal{F}=\left\{f_{n}(z)=\frac{1}{n z^{2}}: z \in \Delta \text { and } n \neq(-1)^{k}(k+1)!\right\} .
$$

Clearly, $f_{n}(z) \neq 0$ and all of whose poles are multiple. We also have $f_{n}^{(k)}(z)-$ $\psi(z)=\left(\frac{(-1)^{k}(k+1)!}{n}-1\right) \frac{1}{z^{k+2}} \neq 0$. Thus conditions (1) and (2) in Theorem 1 are
satisfied. Set $z_{n}=\frac{\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i}{\sqrt{n}}$, we have $\lim _{n \rightarrow \infty} z_{n}=0$. Clearly, $\lim _{n \rightarrow \infty} \frac{\left|f^{\prime}\left(z_{n}\right)\right|}{1+\left|f\left(z_{n}\right)\right|^{2}}=\infty$, by Marty's Theorem [5], we have that \mathcal{F} is not normal at $z_{0}=0$.

Remark 2. The above example shows that the restriction on the multiplicities of the poles of $\psi(z)$ in Theorem 1 is indispensable comparing to the holomorphic function $\psi(z)$ in Corollary.

2. Some lemmas

The well-known Zalcman's lemma is a very important tool in the study of normal families. It has also undergone various extensions and improvements. The following is one up-to-date local version for $f(z) \neq 0$, which is due to Xue and Pang [6] and Zalcman [9].

Lemma 1. Let \mathcal{F} be a family of meromorphic functions on a domain D such that $f(z) \neq 0$ and all poles of functions in f have multiplicity greater than or equal to j. Let α be a real number satisfying $-\infty<\alpha<j$. Then \mathcal{F} is not normal in any neighborhood of $z_{0} \in D$, if and only if there exist
(a) points $z_{n}, z_{n} \rightarrow z_{0}$;
(b) functions $f_{n} \in \mathcal{F}$; and
(c) positive numbers $\rho_{n} \rightarrow 0^{+}$such that $\rho_{n}^{\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right)=g_{n}(\xi) \rightarrow g(\xi)$ locally uniformly with respect to the spherical metric, where $g(\xi)$ is a nonconstant meromorphic function on \mathbb{C}. Moreover, the order of $g(\xi)$ is less than 2 and the poles of $g(\xi)$ are of multiplicity $\geq j$.

Here, as usual, $g^{\#}(\xi)=\frac{\left|g^{\prime}(\xi)\right|}{1+|g(\xi)|^{2}}$ is the spherical derivative.
Lemma 2 (See [10, Lemma 2.2]). Let \mathcal{F} be a family of meromorphic functions defined in a domain D and k be a positive integer, and let $b(z)(\neq 0), a_{0}(z)$, $a_{1}(z), \ldots, a_{k-1}(z)$ be analytic functions in D. If, for every function $f \in \mathcal{F}, f \neq$ 0 and all poles of $f(z)$ are multiple, and all zeros of $f^{(k)}(z)+a_{k-1}(z) f^{(k-1)}(z)+$ $\cdots+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)-b(z)$ have multiplicity at least $k+3$, then \mathcal{F} is normal in D.

Lemma 3. Let $k>0, l \geq 0$ be two integers, and let $f(z)$ be a non-constant rational function. If $f(z) \neq 0$, and all poles of $f(z)$ are multiple in \mathbb{C}, then $f^{(k)}(z)-z^{l}$ has at least one zero which has multiplicity $\leq k+2$ in \mathbb{C}.

Proof. We may assume that all zeros of $f^{(k)}(z)-z^{l}$ have multiplicities at least $k+3$. Since $f(z) \neq 0$, we can deduce that $f(z)$ is a non-polynomial rational and has the following form

$$
\begin{equation*}
f(z)=\frac{A}{\left(z-\alpha_{1}\right)^{n_{1}}\left(z-\alpha_{2}\right)^{n_{2}} \cdots\left(z-\alpha_{t}\right)^{n_{t}}}, \tag{2.3.1}
\end{equation*}
$$

where A is a non-zero constant and $n_{j} \geqslant 2(j=1,2, \ldots, t)$ are integers.

By mathematical induction, from (2.3.1), we have

$$
\begin{equation*}
f^{(k)}(z)=\frac{g_{k(t-1)}(z)}{\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}}, \tag{2.3.2}
\end{equation*}
$$

where $g_{k(t-1)}(z)$ is a polynomial.
We use $\operatorname{deg}(g(z))$ to denote the degree of a polynomial and easily obtain that

$$
\begin{equation*}
\operatorname{deg}\left(g_{k(t-1)}(z)\right)=k(t-1) \tag{2.3.3}
\end{equation*}
$$

Because all zeros of $f^{(k)}(z)-z^{l}$ are of multiplicity $\geq k+3$ in \mathbb{C}, so we can get

$$
\begin{equation*}
f^{(k)}(z)-z^{l}=B \frac{\left(z-\beta_{1}\right)^{m_{1}}\left(z-\beta_{2}\right)^{m_{2}} \cdots\left(z-\beta_{s}\right)^{m_{s}}}{\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}}, \tag{2.3.4}
\end{equation*}
$$

where B is a non-zero constant and $m_{i} \geqslant k+3(i=1,2, \ldots, s)$ are integers.
For simplicity, we denote

$$
\begin{gather*}
m_{1}+m_{2}+\cdots+m_{s}=M \geq(k+3) s \tag{2.3.5}\\
n_{1}+n_{2}+\cdots+n_{t}=N \geq 2 t \tag{2.3.6}
\end{gather*}
$$

From (2.3.4), we have $s \geq 1$ and $M=N+k t+l \geq 2 t+k t+l$, thus we can get

$$
\begin{equation*}
t \leq \frac{M-l}{2+k} \tag{2.3.7}
\end{equation*}
$$

From (2.3.2) and (2.3.4) we have

$$
\begin{gather*}
\frac{f^{(k)}(z)}{z^{l}}=\frac{g_{k(t-1)}(z)}{z^{l}\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}}, \tag{2.3.8}\\
\frac{f^{(k)}(z)}{z^{l}}-1=B \frac{\left(z-\beta_{1}\right)^{m_{1}}\left(z-\beta_{2}\right)^{m_{2}} \cdots\left(z-\beta_{s}\right)^{m_{s}}}{z^{l}\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}} .} . \tag{2.3.9}
\end{gather*}
$$

We distinguish the following two cases.
Case 1. Assume that $\alpha_{1} \alpha_{2} \cdots \alpha_{t} \neq 0$.
From (2.3.8) and (2.3.9), by taking derivative once, we derive

$$
\begin{equation*}
\left(\frac{f^{(k)}(z)}{z^{l}}\right)^{\prime}=\frac{g_{k(t-1)+t}(z)}{z^{l+1}\left(z-\alpha_{1}\right)^{n_{1}+k+1}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}} \tag{2.3.10}
\end{equation*}
$$

where $g_{k(t-1)+t}(z)$ is a polynomial and easily obtained that $\operatorname{deg}\left(g_{k(t-1)+t}(z)\right)=$ $k(t-1)+t$.

$$
\begin{equation*}
\left(\frac{f^{(k)}(z)}{z^{l}}\right)^{\prime}=\frac{\left(z-\beta_{1}\right)^{m_{1}-1}\left(z-\beta_{2}\right)^{m_{2}-1} \cdots\left(z-\beta_{s}\right)^{m_{s}-1} g_{s+t}(z)}{z^{l+1}\left(z-\alpha_{1}\right)^{n_{1}+k+1}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}} \tag{2.3.11}
\end{equation*}
$$

where $g_{s+t}(z)$ is a polynomial.
By comparing the above equations, we deduce that

$$
M-s \leq \operatorname{deg}\left(g_{k(t-1)+t}(z)\right)=k(t-1)+t=(k+1) t-k
$$

i.e.,

$$
\begin{equation*}
t \geq \frac{M+k-s}{k+1} \tag{2.3.12}
\end{equation*}
$$

By (2.3.7) and (2.3.12), we get $\frac{M+k-s}{k+1} \leq \frac{M-l}{2+k}$. Through a simple calculation, we have

$$
M \leq(2+k)(s-k)-(k+1) l<(k+2) s
$$

Note that $s \geq 1$, so the above inequality contradicts $M \geq(k+3) s$.
Case 2. Assume that $\alpha_{1} \alpha_{2} \cdots \alpha_{t}=0$.
Without loss of generality, we may assume $\alpha_{1}=0$. From (2.3.8) and (2.3.9), we have

$$
\begin{equation*}
\left(\frac{f^{(k)}(z)}{z^{l}}\right)^{\prime}=\frac{g_{(k+1)(t-1)}(z)}{z^{n_{1}+k+l+1}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}}, \tag{2.3.10}
\end{equation*}
$$

where $g_{(k+1)(t-1)}(z)$ is a polynomial and easily obtained that $\operatorname{deg}\left(g_{(k+1)(t-1)}(z)\right)$ $=(k+1)(t-1)$.

$$
\begin{equation*}
\left(\frac{f^{(k)}(z)}{z^{l}}\right)^{\prime}=\frac{\left(z-\beta_{1}\right)^{m_{1}-1}\left(z-\beta_{2}\right)^{m_{2}-1} \cdots\left(z-\beta_{s}\right)^{m_{s}-1} g_{s+t-1}(z)}{z^{n_{1}+k+l+1}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}} \tag{2.3.11}
\end{equation*}
$$

where $g_{s+t-1}(z)$ is a polynomial.
Proceeding as in the proof for Case 1, we have a contradiction.
This completes the proof of Lemma 3.
Lemma 4. Let $k>0,0 \leq l \leq k$ be two integers, and let $f(z)$ be a non-constant rational function. If $f(z) \neq 0$, and all poles of $f(z)$ are multiple in \mathbb{C}, then $f^{(k)}(z)-\frac{1}{z^{t}}$ has at least one zero which has multiplicity $\leq k+2$ in \mathbb{C}.

Proof. We may assume that all zeros of $f^{(k)}(z)-\frac{1}{z^{l}}$ have multiplicities at least $k+3$. Since $f(z) \neq 0$, we can deduce that $f(z)$ is a non-polynomial rational function and has the following form

$$
\begin{equation*}
f(z)=\frac{A}{\left(z-\alpha_{1}\right)^{n_{1}}\left(z-\alpha_{2}\right)^{n_{2}} \cdots\left(z-\alpha_{t}\right)^{n_{t}}} \tag{2.4.1}
\end{equation*}
$$

where A is a non-zero constant and $n_{j} \geqslant 2(j=1,2, \ldots, t)$ are integers.
By mathematical induction, from (2.4.1), we have

$$
\begin{equation*}
f^{(k)}(z)=\frac{g_{k(t-1)}(z)}{\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}} \tag{2.4.2}
\end{equation*}
$$

where $g_{k(t-1)}(z)$ is a polynomial.
We use $\operatorname{deg}(g(z))$ to denote the degree of a polynomial and easily obtain that

$$
\begin{equation*}
\operatorname{deg}\left(g_{k(t-1)}(z)\right)=k(t-1) \tag{2.4.3}
\end{equation*}
$$

We distinguish the following two cases.
Case 1. Assume that $\alpha_{1} \alpha_{2} \cdots \alpha_{t} \neq 0$.

From (2.4.2), we have
(2.4.4)

$$
f^{(k)}(z)-\frac{1}{z^{l}}=\frac{g_{k(t-1)}(z) z^{l}-\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}}{z^{l}\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}} .
$$

Since all zeros of $f^{(k)}(z)-\frac{1}{z^{t}}$ are of multiplicity $\geq k+3$ in \mathbb{C}, so we can get

$$
\begin{equation*}
f^{(k)}(z)-\frac{1}{z^{l}}=B \frac{\left(z-\beta_{1}\right)^{m_{1}}\left(z-\beta_{2}\right)^{m_{2}} \cdots\left(z-\beta_{s}\right)^{m_{s}}}{z^{l}\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}} \tag{2.4.5}
\end{equation*}
$$

where B is a non-zero constant and $m_{i} \geqslant k+3(i=1,2, \ldots, s)$ are integers.
For simplicity, we denote

$$
\begin{gather*}
m_{1}+m_{2}+\cdots+m_{s}=M \geq(k+3) s \tag{2.4.6}\\
n_{1}+n_{2}+\cdots+n_{t}=N \geq 2 t \tag{2.4.7}
\end{gather*}
$$

From (2.4.2) and (2.4.5) we have

$$
\begin{align*}
& z^{l} f^{(k)}(z)=\frac{z^{l} g_{k(t-1)}(z)}{\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}}=\frac{p(z)}{q(z)}, \tag{2.4.8}\\
& z^{l} f^{(k)}(z)-1=B \frac{\left(z-\beta_{1}\right)^{m_{1}}\left(z-\beta_{2}\right)^{m_{2}} \cdots\left(z-\beta_{s}\right)^{m_{s}}}{\left(z-\alpha_{1}\right)^{n_{1}+k}\left(z-\alpha_{2}\right)^{n_{2}+k} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k}} . \tag{2.4.9}
\end{align*}
$$

We know $l \leq k$ and $\operatorname{deg}\left(g_{k(t-1)}(z)\right)=k(t-1)$, we get $\operatorname{deg}(p(z)) \leq k t$ and $\operatorname{deg}(q(z)) \geq k t+2 t$, so $\operatorname{deg}(q(z))>\operatorname{deg}(p(z))$. Combining this with (2.4.9), we have $s \geq 1$. It follows from (2.4.9) that

$$
M=N+k t \geq 2 t+k t
$$

i.e.,

$$
\begin{equation*}
t \leq \frac{M}{2+k} \tag{2.4.10}
\end{equation*}
$$

We derive from (2.4.8) and (2.4.9)

$$
\begin{equation*}
\left(z^{l} f^{(k)}(z)\right)^{\prime}=\frac{g_{(k+1)(t-1)+l}(z)}{\left(z-\alpha_{1}\right)^{n_{1}+k+1}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}} \tag{2.4.11}
\end{equation*}
$$

where $g_{(k+1)(t-1)+l}(z)$ is a polynomial and easily obtained that

$$
\operatorname{deg}\left(g_{(k+1)(t-1)+l}(z)\right)=(k+1)(t-1)+l .
$$

$$
\begin{equation*}
\left(z^{l} f^{(k)}(z)\right)^{\prime}=\frac{\left(z-\beta_{1}\right)^{m_{1}-1}\left(z-\beta_{2}\right)^{m_{2}-1} \cdots\left(z-\beta_{s}\right)^{m_{s}-1} g_{s+t-1}(z)}{\left(z-\alpha_{1}\right)^{n_{1}+k+1}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}} \tag{2.4.12}
\end{equation*}
$$

where $g_{s+t-1}(z)$ is a polynomial.
We obtain from (2.4.11) and (2.4.12) that

$$
M-s \leq(k+1)(t-1)+l .
$$

So

$$
\begin{equation*}
t \geq \frac{M+(k+1)-s-l}{k+1} \tag{2.4.13}
\end{equation*}
$$

The inequality (2.4.10) and (2.4.13) imply $\frac{M+(k+1)-s-l}{k+1} \leq \frac{M}{2+k}$. Through a simple calculation, note that $l \leq k$ and $s \geq 1$, we have

$$
M \leq(2+k)(s+l-k-1) \leq(2+k)(s-1)
$$

which is a contradiction.
Case 2. Assume that $\alpha_{1} \alpha_{2} \cdots \alpha_{t}=0$.
Without loss of generality, we may assume $\alpha_{1}=0$. We derive from (2.4.8) and (2.4.9)

$$
\begin{equation*}
\left(z^{l} f^{(k)}(z)\right)^{\prime}=\frac{g_{(k+1)(t-1)}(z)}{z^{n_{1}+k+1-l}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}}, \tag{2.4.10}
\end{equation*}
$$

where $g_{(k+1)(t-1)}(z)$ is a polynomial and easily obtained that $\operatorname{deg}\left(g_{(k+1)(t-1)}(z)\right)$ $=(k+1)(t-1)$.
$(2.4 .11)^{\prime}\left(z^{l} f^{(k)}(z)\right)^{\prime}=\frac{\left(z-\beta_{1}\right)^{m_{1}-1}\left(z-\beta_{2}\right)^{m_{2}-1} \cdots\left(z-\beta_{s}\right)^{m_{s}-1} g_{s+t-1}(z)}{z^{n_{1}+k+1-l}\left(z-\alpha_{2}\right)^{n_{2}+k+1} \cdots\left(z-\alpha_{t}\right)^{n_{t}+k+1}}$,
where $g_{s+t-1}(z)$ is a polynomial.
We can arrive at a contradiction by using the same argument as in the proof for Case 1.

The proof is complete.
Lemma 5. Let $k>0, l \geq-k$ be two integers, and let $f(z)$ be a non-constant function. If $f(z) \neq 0$, and all poles of $f(z)$ are multiple in \mathbb{C}, then $f^{(k)}(z)-z^{l}$ has at least one zero which has multiplicity $\leq k+2$ in \mathbb{C}.

Proof. We may assume that all zeros of $f(z)$ have multiplicities at least $k+3$. The Lemma 3 and Lemma 4 imply that $f(z)$ is a transcendental function. We know

$$
\frac{1}{f}=\frac{f^{(k)}}{z^{l} f}-\frac{\left(z^{-l} f^{(k)}\right)^{\prime}}{f} \frac{z^{-l} f^{(k)}-1}{\left(z^{-l} f^{(k)}\right)^{\prime}}
$$

Therefore

$$
\begin{aligned}
m\left(r, \frac{1}{f}\right) \leq & m\left(r, \frac{f^{(k)}}{f}\right)+m\left(r, z^{-l}\right)+m\left(r, \frac{\left(z^{-l} f^{(k)}\right)^{\prime}}{z^{-l} f} z^{-l}\right) \\
& +m\left(r, \frac{z^{-l} f^{(k)}-1}{\left(z^{-l} f^{(k)}\right)^{\prime}}\right)+\log 2 \\
\leq & m\left(r, \frac{z^{-l} f^{(k)}-1}{\left(z^{-l} f^{(k)}\right)^{\prime}}\right)+S(r, f) .
\end{aligned}
$$

Combining

$$
m\left(r, \frac{z^{-l} f^{(k)}-1}{\left(z^{-l} f^{(k)}\right)^{\prime}}\right)=m\left(r, \frac{\left(z^{-l} f^{(k)}\right)^{\prime}}{z^{-l} f^{(k)}-1}\right)+N\left(r, \frac{\left(z^{-l} f^{(k)}\right)^{\prime}}{z^{-l} f^{(k)}-1}\right)
$$

$$
\begin{aligned}
& -N\left(r, \frac{z^{-l} f^{(k)}-1}{\left(z^{-l} f^{(k)}\right)^{\prime}}\right)+O(1) \\
\leq & S(r, f)+N\left(r,\left(z^{-l} f^{(k)}\right)^{\prime}\right)+N\left(r, \frac{1}{z^{-l} f^{(k)}-1}\right) \\
& -N\left(r, \frac{1}{\left(z^{-l} f^{(k)}\right)^{\prime}}\right)-N\left(r, z^{-l} f^{(k)}-1\right) \\
\leq & \bar{N}\left(r, z^{-l} f^{(k)}\right)+\bar{N}\left(r, \frac{1}{z^{-l} f^{(k)}-1}\right)+S(r, f) \\
\leq & \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}-z^{l}}\right)+S(r, f)
\end{aligned}
$$

with

$$
N\left(r, \frac{1}{f}\right)=0 .
$$

We get

$$
\begin{aligned}
T(r, f) & =m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}-z^{l}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\frac{1}{k+3} N\left(r, \frac{1}{f^{(k)}-z^{l}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\frac{1}{k+3} T\left(r, f^{(k)}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\frac{1}{k+3} T(r, f)+\frac{k}{k+3} \bar{N}(r, f)+S(r, f) \\
& \leq\left(1+\frac{k}{k+3}\right) \frac{1}{2} N(r, f)+\frac{1}{k+3} T(r, f)+S(r, f) \\
& \leq \frac{2 k+3}{2(k+3)} N(r, f)+\frac{1}{k+3} T(r, f)+S(r, f) \\
& \leq \frac{2 k++5}{2(k+3)} T(r, f)+S(r, f) \\
& \leq \frac{2 k+5}{2 k+6} T(r, f)+S(r, f) \\
& <T(r, f)+S(r, f)
\end{aligned}
$$

which is impossible. This completes the proof of Lemma 5.
Lemma 6. Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let k be a integer, and let $\psi_{n}(z)$ be a sequence of holomorphic functions on D such that $\psi_{n}(z) \rightarrow \psi(z)$ locally uniformly on D, where $\psi(z)(\neq 0)$ is a holomorphic on D. If, for each $f \in \mathcal{F}$ and $z \in D$,
(1) $f(z) \neq 0$, and all poles of $f(z)$ are multiple in D;
(2) all zeros of $f^{(k)}(z)-\psi_{n}(z)$ have multiplicities at least $k+3$ in D,
then \mathcal{F} is normal in D.
Proof. Suppose that \mathcal{F} is not normal at $z_{0} \in D$. By Lemma 1, there exist a sequence of functions $f_{n} \in \mathcal{F}$, a sequence of complex numbers $z_{n} \rightarrow z_{0}$ and a sequence of positive numbers $\rho_{n} \rightarrow 0^{+}$such that

$$
\begin{equation*}
g_{n}(\xi)=\rho_{n}^{-k} f_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g(\xi) \tag{2.6.1}
\end{equation*}
$$

spherically uniformly on compact subsets of \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function in \mathbb{C}. Hurwitz's theorem implies that $g(\xi) \neq 0$ and all poles of $g(\xi)$ are multiple.

From (2.6.1), we deduce that

$$
g_{n}^{(k)}(\xi)=f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g^{(k)}(\xi)
$$

spherically uniformly on every compact subset of \mathbb{C} which contains no pole of $g(\xi)$.

Since $g_{n}^{(k)}(\xi)-\psi_{n}\left(z_{n}+\rho_{n} \xi\right)=f_{n}^{(k)}(\xi)-\psi_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g^{(k)}(\xi)-\psi\left(z_{0}\right)$. Hurwitz's theorem implies that all zeros of $g^{(k)}(\xi)-\psi\left(z_{0}\right)$ have multiplicities at least $k+3$. It follows from Lemma 5 (for $l=0$) that $g(\xi)$ is a constant, which contradicts the fact that $g(\xi)$ is a non-constant meromorphic function. Lemma 6 is proved.

3. Proof of Theorem 1

Without loss of generality, we may assume that $D=\Delta=\{z:|z|<1\}$, and

$$
\psi(z)=z^{m} \phi(z)(z \in \Delta)
$$

where m is a integer with $m \geq-k, \phi(0)=1, \phi(z) \neq 0, \infty$ on $\Delta^{\prime}=\{z: 0<$ $|z|<1\}$.

If $m=0$, from Theorem 1 , we have that $\psi(z)(\neq 0)$ is a holomorphic function. By Lemma 2, Theorem 1 is proved. Since normality is local property, we only need to prove that \mathcal{F} is normal at $z=0$ for $m \neq 0$.

We distinguish two cases:
Case 1. $m<0$.
By Lemma 1, there exist a sequence of functions $f_{n} \in \mathcal{F}$, a sequence of complex numbers $z_{n} \rightarrow 0$, and a sequence of positive numbers $\rho_{n} \rightarrow 0^{+}$, such that

$$
\begin{equation*}
W_{n}(\xi)=\rho_{n}^{-k-m} f_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow W(\xi) \tag{3.1}
\end{equation*}
$$

spherically uniformly on compact subsets of \mathbb{C}, where $W(\xi)$ is a non-constant meromorphic function on \mathbb{C}. Hurwitz's theorem implies that $W(\xi) \neq 0$.

We now consider two subcases:
Case 1.1. $z_{n} / \rho_{n} \rightarrow \infty$.
Set $\omega_{n}(\xi)=z_{n}^{-m-k} f_{n}\left(z_{n}+z_{n} \xi\right)=z_{n}^{-m-k} f_{n}\left(z_{n}(1+\xi)\right)$. Clearly, $\omega_{n}(\xi) \neq 0$ and all poles of $\omega_{n}(\xi)$ are multiple. From (3.1), we get

$$
\omega_{n}^{(k)}(\xi)-(1+\xi)^{m} \phi\left(z_{n}(1+\xi)\right)
$$

$$
\begin{aligned}
& =z_{n}^{-m}\left[f_{n}^{(k)}\left(z_{n}(1+\xi)\right)-\left(z_{n}(1+\xi)\right)^{m} \phi\left(z_{n}(1+\xi)\right)\right] \\
& =z_{n}^{-m}\left[f_{n}^{(k)}\left(z_{n}(1+\xi)\right)-\psi\left(z_{n}(1+\xi)\right)\right] .
\end{aligned}
$$

Since $z_{n} \rightarrow 0$, then there exists a natural number N such that, for every natural number $n>N$, we have $\left|z_{n}\right|<\frac{1}{2}$. By the assumption of the theorem, we have that all zeros of $\omega_{n}^{(k)}(\xi)-(1+\xi)^{m} \phi\left(z_{n}(1+\xi)\right)$ have multiplicities at least $k+3$ in Δ for $n>^{n} N$. On the other hand, $(1+\xi)^{m} \phi\left(z_{n}(1+\xi)\right)$ is holomorphic in Δ for $n>N$, and

$$
(1+\xi)^{m} \phi\left(z_{n}(1+\xi)\right) \rightarrow(1+\xi)^{m}(\neq 0)
$$

for $\xi \in \Delta$. Then, by Lemma $6,\left\{\omega_{n}(\xi): n>N\right\}$ is normal in Δ.
Hence, we can find a subsequence $\left\{\omega_{n_{j}}(\xi)\right\} \subset\left\{\omega_{n}(\xi): n>N\right\}$, and a function $\omega(z)$ such that

$$
\begin{equation*}
\omega_{n_{j}}(\xi)=z_{n_{j}}^{-m-k} f_{n_{j}}\left(z_{n_{j}}(1+\xi)\right) \rightarrow \omega(z) \tag{3.2}
\end{equation*}
$$

spherically locally uniformly on Δ.
If $\omega(0) \neq \infty$, from (3.1) and (3.2), and noting that $z_{n} / \rho_{n} \rightarrow \infty$, we have

$$
\begin{aligned}
W^{(m+k)}(\xi) & \left.=\lim _{j \rightarrow \infty} f_{n_{j}}^{(m+k)}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)\right) \\
& =\lim _{j \rightarrow \infty} f_{n_{j}}^{(m+k)}\left(z_{n_{j}}\left(1+\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right)\right) \\
& =\lim _{j \rightarrow \infty} \omega_{n_{j}}^{(m+k)}\left(\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right)=\omega^{(m+k)}(0) .
\end{aligned}
$$

This implies that $W^{(m+k)}(\xi)$ is a finite constant, and then $W(\xi)$ is a polynomial. But this is impossible since $W(\xi)$ is a non-constant meromorphic function and $W(\xi) \neq 0$.

If $\omega(0)=\infty$. From (3.3), we have

$$
\begin{gathered}
z_{n_{j}}^{-m-k} f_{n_{j}}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)=z_{n_{j}}^{-m-k} f_{n_{j}}\left(z_{n_{j}}\left(1+\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right)\right) \\
=\omega_{n_{j}}\left(\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right) \rightarrow \omega(0)=\infty
\end{gathered}
$$

and hence
$W(\xi)=\lim _{j \rightarrow \infty} \rho_{n_{j}}^{-k-m} f_{n_{j}}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)=\lim _{j \rightarrow \infty}\left(\frac{z_{n_{j}}}{\rho_{n_{j}}}\right)^{k+m} z_{n_{j}}^{-m-k} f_{n_{j}}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)=\infty$
that is, $W(\xi) \equiv \infty$, a contradiction.
Case 1.2. $z_{n} / \rho_{n} \rightarrow \alpha$, a finite complex number. We have

$$
W_{n}^{(k)}(\xi)-\rho_{n}^{-m}\left(z_{n}+\rho_{n} \xi\right)^{m} \phi\left(z_{n}+\rho_{n} \xi\right) \rightarrow W^{(k)}(\xi)-(\alpha+\xi)^{m}
$$

on $\mathbb{C}\{-\alpha\}$, and
$W_{n}^{(k)}(\xi)-\rho_{n}^{-m}\left(z_{n}+\rho_{n} \xi\right)^{m} \phi\left(z_{n}+\rho_{n} \xi\right)=\rho_{n}^{-m}\left(f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-\psi\left(z_{n}+\rho_{n} \xi\right)\right)$.

Hurwitz's theorem implies that all zeros of $W^{(k)}(\xi)-(\alpha+\xi)^{m}$ have multiplicities at least $k+3$. It follows from Lemma 5 that $W(\xi)$ must be a constant, a contradiction.

Case 2. $m>0$.
Consider the family $\mathcal{G}=\left\{g(z)=\frac{f(z)}{\psi(z)}: f \in \mathcal{F}, z \in \Delta\right\}$. Since $f \neq 0$ for $f \in \mathcal{F}$, we have that $g(0)=\infty$ for each $g \in \mathcal{G}$.

We first prove that \mathcal{G} is normal in Δ. Suppose, on the contrary, that \mathcal{G} is not normal at $z_{0}=0$. By Lemma 1, there exist a sequence of functions $g_{n} \in \mathcal{G}$, a sequence of complex numbers $z_{n} \rightarrow 0$, and a sequence of positive numbers $\rho_{n} \rightarrow 0^{+}$, such that

$$
G_{n}(\xi)=\rho_{n}^{-k} g_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow G(\xi)
$$

spherically uniformly on compact subsets of \mathbb{C}, where $G(\xi)$ is a non-constant meromorphic function on \mathbb{C}. Hurwitz's theorem implies that $G(\xi) \neq 0$.

We now consider two subcases:
Case 2.1. $z_{n} / \rho_{n} \rightarrow \infty$.
By simple calculations, we have

$$
\begin{align*}
g_{n}^{(k)}(z) & =\frac{f_{n}^{(k)}(z)}{\psi(z)}-\sum_{j=1}^{k}\binom{k}{j} g_{n}^{(k-j)}(z) \frac{\psi^{(j)}(z)}{\psi(z)} \\
& =\frac{f_{n}^{(k)}(z)}{\psi(z)}-\sum_{j=1}^{k}\left[\binom{k}{j} g_{n}^{(k-j)}(z) \sum_{i=0}^{j} A_{j i} \frac{1}{z^{j-i}} \frac{\phi^{(i)}(z)}{\phi(z)}\right], \tag{3.3}
\end{align*}
$$

where $A_{j j}=1, A_{j i}=m(m-1) \cdots(m-j+i+1)\binom{j}{i}$ if $m \geq j$, and $A_{j i}=0$ if $1 \leq m<j$ for $i=0,1, \ldots, j-1$.

Thus, from (3.3), we have

$$
\begin{aligned}
G_{n}^{(k)}(\xi)= & g_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right) \\
= & \frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)} \\
& -\sum_{j=1}^{k}\left[\binom{k}{j} g_{n}^{(k-j)}\left(z_{n}+\rho_{n} \xi\right) \sum_{i=0}^{j} A_{j i} \frac{1}{\left(z_{n}+\rho_{n} \xi\right)^{j-i}} \frac{\phi^{(i)}\left(z_{n}+\rho_{n} \xi\right)}{\phi\left(z_{n}+\rho_{n} \xi\right)}\right] \\
= & \frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)} \\
& -\sum_{j=1}^{k}\left[\binom{k}{j} \frac{g_{n}^{(k-j)}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{j}} \sum_{i=0}^{j} A_{j i} \frac{1}{\left(z_{n} / \rho_{n}+\xi\right)^{j-i}} \frac{\rho_{n}^{i} \phi^{(i)}\left(z_{n}+\rho_{n} \xi\right)}{\phi\left(z_{n}+\rho_{n} \xi\right)}\right] .
\end{aligned}
$$

On the other hand, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\left(z_{n} / \rho_{n}+\xi\right)}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}^{i} \phi^{(i)}\left(z_{n}+\rho_{n} \xi\right)}{\phi\left(z_{n}+\rho_{n} \xi\right)}=0
$$

for $i \geq 1$. Noting that $g_{n}^{(k-j)}\left(z_{n}+\rho_{n} \xi\right) / \rho_{n}^{j}$ is locally bounded on \mathbb{C} minus the set of poles of $G(\xi)$ since $g_{n}\left(z_{n}+\rho_{n} \xi\right) / \rho_{n}^{k} \rightarrow G(\xi)$. Therefore, on every compact subset of \mathbb{C} which contains no poles of $G(\xi)$, we have

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)} \rightarrow G^{(k)}(\xi)
$$

thus

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-\psi\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)} \rightarrow G^{(k)}(\xi)-1
$$

Noting that $\psi\left(z_{n}+\rho_{n} \xi\right)$ has only one zero $\xi=-\frac{z_{n}}{\rho_{n}} \rightarrow \infty$, by the assumption of theorem, we have that all poles of $G(\xi)$ are multiple. Since all zeros of $f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-\psi\left(z_{n}+\rho_{n} \xi\right)$ have multiplicities at least $k+3$, and It follows from Lemma 5 (for $l=0$) that $G(\xi)$ must be a constant, which contradicts the fact that $G(\xi)$ is a non-constant meromorphic function.

Case 2.2. $z_{n} / \rho_{n} \rightarrow \alpha$, a finite complex number. We have

$$
\rho_{n}^{-k} g_{n}\left(\rho_{n} \xi\right)=\rho_{n}^{-k} g_{n}\left(z_{n}+\rho_{n}\left(\xi-z_{n} / \rho_{n}\right)\right)=G_{n}\left(\xi-z_{n} / \rho_{n}\right) \rightarrow G(\xi-\alpha)
$$

spherically uniformly on compact subsets of \mathbb{C}. Clearly, $G(\xi-\alpha) \neq 0$, and the pole of $G(\xi-\alpha)$ at $\xi=0$ has multiplicity at least m. Now

$$
\begin{equation*}
F_{n}(\xi)=\frac{f_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k+m}}=\frac{f_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k} \psi\left(\rho_{n} \xi\right)} \frac{\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{m}}=\frac{g_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k}} \frac{\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{m}} . \tag{3.4}
\end{equation*}
$$

Noting that $\frac{\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{m}} \rightarrow \xi^{m}$, we get

$$
F_{n}(\xi) \rightarrow \xi^{m} G(\xi-\alpha)=F(\xi)
$$

spherically uniformly on compact subsets of \mathbb{C}. Since the pole of $G(\xi-\alpha)$ at $\xi=0$ has multiplicity at least m, we have $F(0) \neq 0$, hence $F(\xi) \neq 0$.

From (3.4), we have

$$
\begin{equation*}
\frac{f_{n}^{(k)}\left(\rho_{n} \xi\right)-\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{m}} \rightarrow F^{(k)}(\xi)-\xi^{m} \tag{3.5}
\end{equation*}
$$

By the assumption of Theorem and (3.5), Hurwitz's theorem implies that all zeros of $F^{(k)}(\xi)-\xi^{m}$ have multiplicities at least $k+3$. It follows from Lemma 5 that $F(\xi)$ must be a constant, a contradiction.

We thus have proved that \mathcal{G} is normal in Δ. Thus the family \mathcal{G} is equicontinuous on Δ with respect to the spherical distance. We see that $f_{n}(z)$ and $\psi(z)$ have no common zeros. On the other hand, $g(0)=\infty$ for each $g \in \mathcal{G}$, so there exists $\delta>0$ such that $|g(z)| \geq 1$ for all $g \in \mathcal{G}$ and each $z \in \Delta_{\delta}=\{z:|z|<\delta\}$. Suppose that \mathcal{F} is not normal at $z=0$. Since \mathcal{F} is normal in Δ_{δ}^{\prime}, the family $\mathcal{F}_{1}=\left\{\frac{1}{f}: f \in \mathcal{F}\right\}$ is normal in Δ_{δ}^{\prime}, but it is not normal at $z=0$. Then
there exists a sequence $\left\{\frac{1}{f_{n}}\right\} \subset \mathcal{F}_{1}$ which converges locally uniformly in Δ_{δ}^{\prime}, but not in Δ_{δ}. Noting that $f_{n} \neq 0$ in Δ, it follows that $\frac{1}{f_{n}}$ is holomorphic in Δ for each n. If $\frac{1}{f_{n}}$ converges a analytic function locally uniformly in Δ^{\prime}, by maximum modulus principle, we have that $\frac{1}{f_{n}}$ is locally bounded uniformly on Δ, which contradicts the assumption that \mathcal{F}_{1} is not normal at $z=0$. So we have $\frac{1}{f_{n}} \rightarrow \infty$ in Δ^{\prime}. Thus $f_{n} \rightarrow 0$ converges locally uniformly in Δ^{\prime}, and hence so does $\left\{g_{n}\right\} \subset \mathcal{G}$, where $g_{n}=f_{n} / \psi$, which contradicts $|g(z)| \geq 1$ for $z \in \Delta_{\delta}=\{z:|z|<\delta\}$. Thus \mathcal{F} is normal in D.

This proves the theorem.
Acknowledgment. This work was supported by National Science Foundation of Shaanxi province (Grant No. 17JK1165) and Foundation of Shaanxi Railway Institute (Grant No. KY2016-05). We thank the referee(s) for reading the manuscript very carefully and making a number of valuable and kind comments which improved the presentation.

References

[1] H. H. Chen and H. X. Hua, Normality criterion and singular directions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, in: Conf. Proc. Lecture Notes Anal., pp. 34-40, vol. I, Internat. Press, Cambridge, MA, 1994.
[2] M. L. Fang, Normality criteria for a family of meromorphic functions, Acta Math. Sinica 37 (1994), no. 1, 86-90.
[3] Y. X. Gu, X. C. Pang, and M. L. Fang, Normal Families and its Application, Science Press, Beijing, 2007.
[4] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[5] J. Schiff, Normal Families, Springer-Verlag, Berlin, 1993.
[6] G. F. Xue and X. C. Pang, A criterion for normality of a family of meromorphic functions, J. East China Norm. Univ. Natur. Sci. Ed. 2 (1988), no. 2, 15-22.
[7] L. Yang, A fundamental inequality and its application, Chinese Ann. Math. Ser. B 4 (1983), no. 3, 347-354.
[8] , Value Distribution Theory, Springer/Science Press, Berlin, 1993.
[9] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. 35 (1998), no. 3, 215-230.
[10] L. J. Zhao, Normal families of meromorphic functions and multiple values, Acta Math. Sci. Ser. A. Chin. Ed. 35 (2015), no. 2, 256-263.

Yuntong Li
Department of Basic Course
Shaanxi Railway Institute
Weinan 714000, Shaanxi Province, P. R. China
E-mail address: liyuntong2005@sohu.com
Zhixiu Liu
College of Science
Nanchang Institute of Technology
Nanchang 330099, P. R. China
E-mail address: 359536229@qq.com

