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A POLAR REPRESENTATION OF A REGULARITY OF

A DUAL QUATERNIONIC FUNCTION IN

CLIFFORD ANALYSIS

Ji Eun Kim and Kwang Ho Shon

Abstract. The paper gives the regularity of dual quaternionic functions
and the dual Cauchy-Riemann system in dual quaternions. Also, the pa-
per researches the polar representation and properties of a dual quater-
nionic function and their regular quaternionic functions.

1. Introduction

A dual number z is consisted of real numbers x and y associated with a real
unit 1 and the dual unit ε, where ε2 = 0. A dual number is denoted in the
form z = x+ εy. Thus, the dual numbers are elements of the two dimensional
real algebra

D = R[ε] = {z = x+ εy | x, y ∈ R, ε2 = 0, ε 6= 0}
generated by 1 and ε (see [17]).

The algebra of dual numbers has been studied by Clifford [1] and its applica-
tions to mechanics are due to Study [20]. Dual algebra has been often used for
the field of displacement analysis, kinematic synthesis and dynamic analysis of
spatial mechanisms. Dual numbers can be represented as follows ([3]):

1. Gaussian representation: z = x+ εy,
2. Polar representation: z = r(1 + εφ),
3. Exponential representation: z = r exp(εφ), where r = x (x 6= 0), φ = y

x
and exp(εφ) = 1 + εφ.

The dual number has a geometrical property which is investigated detail in
[4, 17].

Clifford [1] also has studied the following algebra

H = {p = z1 + z2j | z1 = x0 + x1i, z2 = x2 + x3i, xr ∈ R (r = 0, 1, 2, 3)}
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called the set of quaternions. Here imaginary basis elements i, j and k satisfy
the following conditions:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

For two quaternions p = z1 + z2j and q = w1 +w2j, they are given the rules of
the addition and multiplication as follows, respectively,

p+ q = (z1 + w1) + (z2 + w2)j

and
pq = (z1w1 − z2w2) + (z1w2 + z2w1)j,

where wk = yk0 − yk1i for wk = yk0 + yk1i, ykj ∈ R, k = 1, 2, j = 0, 1. Kaji-
wara et al. [5, 6] applied the theory on a closed densely defined operator and
a priori estimate for the adjoint operator in a Hilbert space and brconvex do-
mains. We [9, 10, 11, 12] researched corresponding Cauchy-Riemann systems
and properties of functions with values in special quaternions such as reduced
quaternions, split quaternions and dual split quaternions. We [13, 14, 15] in-
vestigated a regular functions defined by the differential operators of special
quaternion number systems. Porter [19] gave an explicit solution to the linear
equation in the quaternions H.

This paper gives expressions of the differential operators and the exponential
functions in dual quaternions. The paper researches the polar representation
of dual quaternionic functions by using a dual Cauchy-Riemann system and
their regularity of that functions in dual quaternions.

2. Preliminaries

For p = x0 + x1i+ x2j + x3k ∈ H, we denote by Sc(p) the scalar part, and
by V ec(p) the spatial vector part:

p = Sc(p) + V ec(p),

where Sc(p) = x0 and V ec(p) = x1i + x2j + x3k with xr ∈ R (r = 0, 1, 2, 3).
Then for p, q ∈ H, we have

p+ q = Sc(p) + Sc(q) + V ec(p) + V ec(q),

pq = Sc(p)Sc(q)− V ec(p) · V ec(q)

+ Sc(p)V ec(q) + V ec(p)Sc(q) + V ec(p)× V ec(q),

where Sc(q) = y0, V ec(q) = y1i + y2j + y3k with yr ∈ R (r = 0, 1, 2, 3), the
symbol · is a usual inner product,

V ec(p) · V ec(q) = x1y1 + x2y2 + x3y3,

and the symbol × is a usual outer product,

V ec(p)× V ec(q) = (x2y3 − x3y2)i− (x1y3 − x3y1)j + (x1y2 − x2y1)k.

The norm for a quaternion is

|p|2 := pp∗ = Sc(p)2 + V ec(p) · V ec(p),
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where p∗ = Sc(p)− V ec(p), and the inverse of p is

p−1 =
p∗

|p|2 .

For a unit quaternion, |p| = 1, it is given by:

p = (cos(θ/2),n sin(θ/2))

and
x0 = cos(θ/2), x1 = n1 sin(θ/2),

x2 = n2 sin(θ/2), x3 = n3 sin(θ/2),

where an angle θ and axis n = (n1, n2, n3) of rotation (see [7]).
We consider the following form:

Dq = {Z = p1 + εp2 | pr ∈ H, ε2 = 0, r = 1, 2} ∼= H
2 ∼= R

8,

where ε is the dual unit that commutes with i, j and k. The dual quaternion
Z = p1 + εp2 ∈ Dq is also written as a linear combination of a scalar, denoted
by Sc(Z), and a spatial vector, denoted by V ec(Z) (see [7, 8]):

Z = Sc(Z) + V ec(Z) = Sc(p1) + V ec(p1) + ε{Sc(p2) + V ec(p2)},
where

Sc(Z) = Sc(p1) + εSc(p2) , V ec(Z) = V ec(p1) + εV ec(p2)

with p1, p2 ∈ H.
For two elements Z and W = Sc(W ) + V ec(W ) = Sc(q1) + V ec(q1) +

ε{Sc(q2) + V ec(q2)} of Dq, we give the addition and the multiplication on Dq

as follows:

Z +W = Sc(Z) + Sc(W ) + ε{V ec(Z) + V ec(W )}
and

ZW = Sc(Z)Sc(W )− V ec(Z) · V ec(W ) + Sc(Z)V ec(W )

+ Sc(W )V ec(Z) + V ec(Z)× V ec(W ),

where

V ec(Z) ·V ec(W ) = V ec(p1) ·V ec(q1)+ε{V ec(p1) ·V ec(q2)+V ec(p2) ·V ec(q1)}
and

V ec(Z)×V ec(W )=V ec(p1)×V ec(q1)+ε{V ec(p1)×V ec(q2)+V ec(p2)×V ec(q1)}.
We give the complex conjugate element of Dq:

Z∗ = Sc(p1)− V ec(p1) + ε{Sc(p2)− V ec(p2)}.
It is also written as

Z∗ = Sc(Z)− V ec(Z),

and the modulus of Z, denoted by |Z|, is described by

|Z|2 := Sc(Z)Sc(Z∗)+V ec(Z)·V ec(Z∗) = {Sc(p1)}2+V ec(p1)·V ec(p1) = |p1|2.
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Since every element of the set {εp | p ∈ H} has no inverse, the inverse of a dual
quaternion is given by

Z−1 =
Z†

|p1|2
∈ Dq (p1 6= 0),

where

Z† = (|p1|2 − εp2p
∗
1)p

−1
1 ,

where p−1
1 =

p∗

1

|p1|2
, called the dual conjugate of Z with ZZ† = Z†Z = p1p

∗
1 =

|p1|2.
Plucker [18] gave screw coordinates so that we can rewrite dual quaternions

in a form of the spherical linear interpolation. Screw parameters have the form
(θ, d, I,m), where















θ is the angle of rotation,
d is the translation along the axis,
I is the vector line direction,
m = p× I is the line moment with p is a point on a given line.

From the above components, Daniilidis [2] converted a unit dual quaternion
to screw coordinates as follows:

(2.1) Sc(p1) = cos(θ/2), V ec(p1) = I sin(θ/2), Sc(p2) = −d

2
sin(θ/2),

(2.2) V ec(p2) = I
d

2
cos(θ/2) +m sin(θ/2).

Referring [2], we can write the following representation of a unit dual quaternion

Z = cos
(θ + εd

2

)

+ (I+ εm) sin
(θ + εd

2

)

= cos(φ) + v sin(φ),

where v = I+ εm and φ = θ+εd
2 . By the properties of trigonometric functions,

we have the representation of a unit dual quaternion

Z = ρ cos(φ) + vρ sin(φ)

= cos
(θ

2

)

cos
(εd

2

)

− sin
(θ

2

)

sin
(εd

2

)

+ v
{

sin
(θ

2

)

cos
(εd

2

)

+ cos
(θ

2

)

sin
(εd

2

)}

.

From the representation of a Taylor series, since cos
(

εd
2

)

= 1 and sin
(

εd
2

)

= εd
2 ,

we have

Z = cos
(θ

2

)

− sin
(θ

2

)εd

2
+ v

{

sin
(θ

2

)

+ cos
(θ

2

)εd

2

}

,

where ρ = |Z|2. From the equations (2.1), we have

Z = Sc(p1) + εSc(p2) + v
{

−2

d
Sc(p2) + εSc(p1)

d

2

}

:= p+ vq,
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where

p = Sc(p1) + εSc(p2) , q = −2

d
Sc(p2) + εSc(p1)

d

2
.

Since we have

v2 = I2 = −1,

we obtain a corresponding Euler’s formula for a unit dual quaternion:

exp(vφ) =

∞
∑

n=0

1

n!
(vφ)n = cos(φ) + v sin(φ).

Proposition 2.1. For any unit dual quaternion, we have

1. exp(vφ1) exp(vφ2) = exp(v(φ1 + φ2)),

2.
exp(vφ1)

exp(vφ2)
= exp(v(φ1 − φ2)).

Proof. From the corresponding Euler’s formula for a dual quaternion, we have

exp(vφ1) exp(vφ2) = {cos(φ1) + v sin(φ1)}{cos(φ2) + v sin(φ2)}
= cos(φ1 + φ2) + v sin(φ1 + φ2)

= exp(v(φ1 + φ2))

and

exp(vφ1)

exp(vφ2)
= {cos(φ1) + v sin(φ1)}{cos(φ2)− v sin(φ2)}

= cos(φ1 − φ2) + v sin(φ1 − φ2)

= exp(v(φ1 − φ2)).

Therefore, we obtain the results. �

Proposition 2.2. Let Z = cos(φ) + v sin(φ) be a unit dual quaternion. Then

we have

(2.3) Zn = (cos(φ) + v sin(φ))n = cos(nφ) + v sin(nφ)

for all integer n.

Proof. From the induction for integers n, the equation (2.3) is obtained. �

3. Hyperholomorphic function in dual quaternions

Let Ω be a bounded open set in H2. A function F is given by

F : Ω → Dq; F (Z) = f1(p1, p2) + εf2(p1, p2),

where

f1 = g1(z1, z2, w1, w2) + g2(z1, z2, w1, w2)j and

f2 = h1(z1, z2, w1, w2) + h2(z1, z2, w1, w2)j

are quaternionic functions, gr and hr (r = 1, 2) are complex-valued functions.



588 J. E. KIM AND K. H. SHON

Definition. A function F is said to be hyperholomorphic on Ω = D∩L, where
D is an open subset of Dq and L = H \ {0}+ εH, with values in Dq if the limit
(3.4)
dF (Z)

dZ
:= lim

ζ→0
{F (Z + ζ)− F (Z)}ζ−1 = lim

ζ→0

{F (Z + ζ)− F (Z)}ζ∗
η1η

∗
1

(η1 6= 0)

exists, where ζ = η1 + εη2 → 0 means η1 → 0 and η2 → 0 which are referred
by [16].

Theorem 3.1. A function F is hyperholomorphic on Ω with values in Dq if

and only if the following conditions are held:

(3.5)















lim
η1→0,
η2→0

{F (Z + ζ)− F (Z)}η−1
1 exists and

lim
η1→0,
η2→0

{f1(p1 + η1, p2 + η2)− f1(p1, p2)}η−1
2 = 0.

Proof. Since the dual part of a dual quaternion has no inverse elements, we use
the dual conjugation of Z as follows:

lim
ζ→0

{F (Z + ζ)− F (Z)}ζ−1 = lim
η1→0,
η2→0

{F (Z + ζ)− F (Z)}(η∗1 − εη
†
2)

η1η
∗
1

= lim
η1→0,
η2→0

{F (Z + ζ)− F (Z)}η−1
1

− ε lim
η1→0,
η2→0

{f1(p1 + η1, p2 + η2)− f1(p1, p2)}η−1
2

(

η2η
−1
1

)2

.

For the existence of the above limit, the limit

lim
η1→0,
η2→0

{f1(p1 + η1, p2 + η2)− f1(p1, p2)}η−1
2

has to be independent to (η2η
−1
1 )2. Thus, we obtain the following equation:

lim
η1→0,
η2→0

{f1(p1 + η1, p2 + η2)− f1(p1, p2)}η−1
2 = 0.

Conversely, if the conditions (3.5) are satisfied for the function F , then the
limit

lim
ζ→0

{F (Z + ζ)− F (Z)}ζ−1

exists. From the definition of a hyperholomorphic function in Dq, the function
F is hyperholomorphic. �

We give the left differential operators in Dq.

D1 :=
∂

∂z1
− j

∂

∂z2
and D∗

1 =
∂

∂z1
+ j

∂

∂z2
,
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where ∂
∂zr

and ∂
∂zr

(r = 1, 2) are usual complex differential operators and j is
an imaginary basis element in H.

Remark 3.2. From the representation of differential operators in Dq, we have

FD1 = {g1 + g2j + ε(h1 + h2j)}
( ∂

∂z1
− j

∂

∂z2

)

=
{∂g1

∂z1
+

∂g2

∂z2
+
(∂g2

∂z1
− ∂g1

∂z2

)

j
}

+ ε
{∂h1

∂z1
+

∂h2

∂z2
+
(∂h2

∂z1
− ∂h1

∂z2

)

j
}

and

FD∗
1 = {g1 + g2j + ε(h1 + h2j)}

( ∂

∂z1
+ j

∂

∂z2

)

=
{∂g1

∂z1
− ∂g2

∂z2
+
(∂g2

∂z1
+

∂g1

∂z2

)

j
}

+ ε
{

−∂h2

∂z2
+

∂h1

∂z1
+
(∂h1

∂z2
+

∂h2

∂z1

)

j
}

.

Definition. Let Ω be a bounded open set in H2. Then a function F is said
to be hyperholomorphic on Ω with values in Dq if F satisfies the following
conditions:
(i) each component of F , f1 and f2, is a continuously differentiable function
and
(ii) F satisfies the following equations

(3.6)







FD∗
1 = 0 and

∂f1

∂yr
= 0 (r = 0, 1, 2, 3).

In detail, the equations (3.6) is equivalent to the following system

∂g1

∂z1
=

∂g2

∂z2
,
∂g2

∂z1
= −∂g1

∂z2
,
∂h1

∂z1
=

∂h2

∂z2
,
∂h2

∂z1
= −∂h1

∂z2
,

called the corresponding Cauchy-Riemann system on Dq.
Let Ω be an open set in H2. A function can be written by

F : Ω → Dq;

F (Z) = F (p(ρ, φ), q(ρ, φ)) = M(p(ρ, φ), q(ρ, φ)) + vN(p(ρ, φ), q(ρ, φ)),

where

M = Sc(f1) + εSc(f2) and N = −2

d
Sc(f2) + εSc(f1)

d

2

are dual-valued functions and Sc(f1) and Sc(f2) are real-valued functions.

Theorem 3.3. Let Ω be a bounded open set in H2. If a function F = M +vN

is hyperholomorphic on Ω with values in Dq, then the following equations hold:

(3.7)
∂Sc(f1)

∂Sc(p1)
=

∂Sc(f2)

∂Sc(p2)
and

4

d2
∂Sc(f2)

∂Sc(p1)
=

∂Sc(f1)

∂Sc(p2)
.
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Proof. From the definition of the hyperholomorphic function F on Ω with val-
ues in Dq and Definition 3, if the following limit

lim
λ1→0,
λ2→0

Sc(f1) + εSc(f2) + v{−2
d Sc(f2) + εd

2Sc(f1)}
λ1 + ελ2 + v(−2

d λ2 + εd
2λ1)

exists, then the function F is hyperholomorphic, where λ1 = Sc(η1) and λ2 =
Sc(η2). By the definition of the existence of the limit and calculating of the
complex conjugation of a dual quaternion, we have

∂Sc(f1)(1 + Iεd
2 ) + ∂Sc(f2)(ε− 2

dv)

∂Sc(p1)(1 + Iεd
2 )

=
∂Sc(f1)(1 + Iεd

2 ) + ∂Sc(f2)(ε− 2
dv)

∂Sc(p2)(ε− 2
dv)

.

By arranging the above equation, we have
{∂Sc(f1)

∂Sc(p1)
− ∂Sc(f2)

∂Sc(p2)

}(

2ε− 2

d
v
)

+
{∂Sc(f1)

∂Sc(p2)
− 4

d2
∂Sc(f2)

∂Sc(p1)

}

(1 + Iεd) = 0.

Therefore, we obtain the equations (3.7). �

Theorem 3.4. Let Ω be a bounded open set in H2 and a function F = M+vN

be hyperholomorphic on Ω with values in Dq. Then the following equations hold:

(3.8)
ρ

2
(1 + ε)

∂M

∂ρ
=

∂N

∂φ
and

ρ

2
(1 + ε)

∂N

∂ρ
= −∂M

∂φ
.

Proof. From the chain rule of multi variables calculus, we have

∂M

∂ρ
=

∂p

∂ρ

∂M

∂p
+

∂q

∂ρ

∂M

∂q
,
∂M

∂φ
=

∂p

∂φ

∂M

∂p
+

∂q

∂φ

∂M

∂q
,

∂N

∂ρ
=

∂p

∂ρ

∂N

∂p
+

∂q

∂ρ

∂N

∂q
,
∂N

∂φ
=

∂p

∂φ

∂N

∂p
+

∂q

∂φ

∂N

∂q
.

Since we have the following equations:

∂p

∂ρ
= cosφ,

∂q

∂ρ
= sinφ,

∂p

∂φ
= −ρ(1 + ε) sinφ,

∂q

∂φ
= ρ(1 + ε) cosφ,

we have

∂M

∂ρ
= cosφ

∂M

∂p
+ sinφ

∂M

∂q
,

∂M

∂φ
= −ρ sinφ(1 + ε)

∂M

∂p
+ ρ cosφ(1 + ε)

∂M

∂q
,

∂N

∂ρ
= cosφ

∂N

∂p
+ sinφ

∂N

∂q
,



A POLAR REPRESENTATION OF A DUAL QUATERNIONIC FUNCTION 591

∂N

∂φ
= −ρ sinφ(1 + ε)

∂N

∂p
+ ρ cosφ(1 + ε)

∂N

∂q
,

where

∂M

∂p
=

∂Sc(f1)

∂Sc(p1)
+ ε

∂Sc(f2)

∂Sc(p1)
+

∂Sc(p2)

∂p

{∂Sc(f1)

∂Sc(p2)
+ ε

∂Sc(f2)

∂Sc(p2)

}

,

∂M

∂q
=

∂Sc(p1)

∂q

{∂Sc(f1)

∂Sc(p1)
+ ε

∂Sc(f2)

∂Sc(p1)

}

− d

2

{∂Sc(f1)

∂Sc(p2)
+ ε

∂Sc(f2)

∂Sc(p2)

}

,

∂N

∂p
= −2

d

∂Sc(f2)

∂Sc(p1)
+ ε

d

2

∂Sc(f1)

∂Sc(p1)
+

∂Sc(p2)

∂p

{

−2

d

∂Sc(f2)

∂Sc(p2)
+ ε

d

2

∂Sc(f1)

∂Sc(p2)

}

,

∂N

∂q
=

∂Sc(p1)

∂q

{

−2

d

∂Sc(f2)

∂Sc(p1)
+ε

d

2

∂Sc(f1)

∂Sc(p1)

}

− d

2

{

−2

d

∂Sc(f2)

∂Sc(p2)
+ε

d

2

∂Sc(f1)

∂Sc(p2)

}

.

From Theorem 3.3, we have the following equations by comparing with the
equations (3.7) and the derivative of Sc(f1) and Sc(f2) for Sc(p1) and Sc(p2):

∂M

∂q
=

∂N

∂p
and

∂M

∂p
=

∂N

∂q
.

Therefore, the equations (3.8) are obtained. �

Example 3.5. Let F (Z) = Z = ρ cosφ+ vρ sinφ on Ω in H2. Then we have

∂N

∂φ
=

∂(ρ sinφ)

∂φ
=

1

2
ρ cosφ+

ε

2
ρ cosφ,

∂M

∂ρ
= cosφ,

∂N

∂ρ
= cosφ

and
∂M

∂φ
=

∂(ρ cosφ)

∂φ
= −1

2
ρ sinφ− ε

2
ρ sinφ.

Therefore, the function F satisfies the equations (3.8).
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