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SOME LIMITING RESULTS OF REFLECTED

ORNSTEIN-UHLENBECK PROCESSES WITH

TWO-SIDED BARRIERS

Chenglian Zhu

Abstract. Reflected Ornstein-Uhlenbeck process is a process that re-
turns continuously and immediately to the interior of the state space
when it attains a certain boundary. In this work, we are concerned with
the study of asymptotic behaviours of parametric estimation for ergodic
reflected Ornstein-Uhlenbeck processes with two-sided barriers. More-
over, we also focus on the relations between regulators and the local time
process.

1. Introduction

It is well-known that the parameter estimation for stochastic processes at-
tracts more and more attention. Especially for Ornstein-Uhlenbeck process

dXt = θXtdt+ dWt, t ∈ [0, T ],(1.1)

involved the unknown parameter θ ∈ R, W = {Wt, t ∈ [0, ∞)}. The maximum
likelihood estimation of θ ∈ R, from the observation of a sample path of the
process along the finite interval [0, T ] as T → ∞, is as follows

θ̂T =

∫ T

0
XsdXs

∫ T

0 X2
sds

,

and its behaviour as T → ∞ is well-known (see e.g. [3], [7], [15]).
(i) If the unknown parameter θ < 0, the process X of (1.1) is positive

recurrent, ergodic with invariant distribution N (0, 1
−2θ ), and for T → ∞ it

holds √
T (θ̂T − θ)

D→ N (0, −2θ).

Here and in the sequel,
D→ denotes the convergence in distribution and N is

the normal random variable.
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(ii) If θ = 0, the processX of (1.1) is null recurrent with limiting distribution

T (θ̂T − θ)
D→

∫ 1

0
WtdWt

∫ 1

0 W 2
t dt

=
W 2

1 − 1

2
∫ 1

0 W 2
t dt

as T → ∞. Observe that this limiting distribution is neither normal nor a
mixture of normals.

(iii) If θ > 0, the process X of (1.1) is not recurrent or transient; it holds
|Xt| → ∞ as t → ∞ with probability one and

1√
2θ

eθT (θ̂T − θ)
D→ v

X0 + ξθ

on {X0 + ξθ 6= 0}, as T → ∞, where v ∼ N (0, 1) and ξθ ∼ N (0, 1
2θ ) are two

independent Gaussian random variables.
Furthermore, Jiang and Dong [13] studied the asymptotics behaviors for

estimators of the parameters in the non-stationary Ornstein-Uhlenbeck process
with linear drift, and some more complicate results were derived by them.

In the present work, our goal is to investigate Ornstein-Uhlenbeck process
with the reflected barrier. The reflected Ornstein-Uhlenbeck (abbr. ROU) pro-
cess is a modification of the Ornstein-Uhlenbeck process with an additional
regulator, which keeps the ROU process nonnegative.

Given a filtered probability space Λ := (Ω,F ,P) equipped with a filtration
(Ft)t≥0 satisfying the usual conditions. The ROU processes {Xt, t ≥ 0} re-
flected at the boundary b ∈ R+ on Λ is defined as follows. Let {Xt, t ≥ 0} be
the strong solution whose existence is guaranteed by an extension of the results
of Lions and Sznitman [17] to the stochastic differential equation











dXt = (β − αXt)dt+ σdWt + dLt − dUt,

Xt ∈ [0, b] for all t ≥ 0,

X0 = x,

(1.2)

where b, α ∈ R+, σ ∈ (0,+∞), β ∈ R and {Wt, t ≥ 0} is a one-dimensional
standard Wiener process. L = (Lt)t≥0 and U = (Ut)t≥0 are uniquely deter-
mined by (see, [10]).

• For t ∈ [0, ∞), the sample paths t → Lt and t → Ut are continuous
non-decreasing and L0 = U0 = 0.

• The processes L and U increase only on the respective time sets {t ∈
[0, ∞); Xt = 0} and {t ∈ [0, ∞); Xt = b}. This is equivalent to

∫ t

0

I(Xt > 0)dLt = 0,(1.3)

and
∫ t

0

I(Xt < b)dUt = 0(1.4)



REFLECTED ORNSTEIN-UHLENBECK PROCESSES 575

for all t > 0, where I(·) denotes the indicator function. Sometimes L and U

are called the regulators of the point 0 and b (see, [10]) and by virtue of Ata et
al. [1], the paths of the regulator are nondecreasing, right continuous with left
limits and possess the support property

∫ t

0

I(Xs = 0)dLs = Lt,(1.5)

and

∫ t

0

I(Xs = b)dUs = Ut.(1.6)

In many cases, the stochastic processes are not allowed to cross a certain bound-
ary, or are even supposed to remain within two boundaries. The stochastic
processes with the reflection behave like the standard Ornstein-Uhlenbeck pro-
cesses in the interior of their domain. However, when they reaches the bound-
ary, the sample path returns to the interior in a manner that the “pushing”
force is minimal. This kind of processes, which can be applied into the field
of queueing system, financial engineering, mathematical biology, has attracted
the attention of scholars around the world.

Many attempts have been made to research the ROU processes in the aspects
of theory and application, see for example, Ricciardi and Sacerdote [21] applied
the ROU processes into the field of mathematical biology. Krugman [14] limited
the currency exchange rate dynamics in a target zone by two reflecting barriers.
Goldstein and Keirstead [8] explored the term structure of interest rates for
the short rate processes with reflecting boundaries. In Hanson et al. [9]), the
asset pricing models with truncated price distributions had been investigated.
Linetsky [16] studied the analytical representation of transition density for
reflected diffusions in terms of their Sturm-Liouville spectral expansions. Bo et
al. [4, 5] applied the ROU processes to model the dynamics of asset prices in a
regulated market, and the conditional default probability with incomplete (or
partial) market information was calculated. Ward and Glynn [22, 23, 24] shown
that the ROU processes serve as a good approximation for a Markovian queue
with reneging when the arrival rate is either close to or exceeds the processing
rate and the reneging rate is small and the ROU processes also well approximate
queues having renewal arrival and service processes in which customers have
deadlines constraining total sojourn time. Customers either renege from the
queue when their deadline expires or balk if the conditional expected waiting
time given the queue-length exceeds their deadline.

In practice, some important aspects of performance of a queueing system
(e.g. customers’ waiting times, traffic intensities) may not be directly observ-
able and therefore such performance measures and their related model param-
eters need to be statistically inferred from the available observed data. In the
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case of Ornstein-Uhlenbeck processes driven by Wiener processes, the statisti-
cal inference for these processes has been studied and a comprehensive survey
of various methods was given in Prakasa Rao [18] and Bishwal [3].

Recently, based on continuous observations, Bo et al. [4] first presented the
maximum likelihood estimator (MLE) for the ergodic ROU processes and de-
rived the MLE of the unknown parameter α, on the basis of the process {Xt}
up to a previously determined fixed time T . Zang and Zhang [25] derived pa-
rameter estimation for generalized diffusion processes with reflected boundary.

In this paper, our interest lies in the asymptotic behaviors of maximum
likelihood estimator of the reflected Ornstein-Uhlenbeck processes with two
barriers and the relation between regulators and local time of the observable
process.

Noting that σ in our model is an unknown constant which is independent of
the parameter α and the quadratic variation process [X ]t equals to σ2t, t ≥ 0,
we assume that σ is known and set it equal to one in the situation of continuous
observations.

2. Main results

Theorem 2.1. In our model (1.2), we have

Lt =
1

2
ℓ0t = lim

ε→0

1

2ε

∫ t

0

I(0 < Xs < ε)ds,(2.1)

and

Ut =
1

2
ℓbt = lim

ε→0

1

2ε

∫ t

0

I(0 < Xs − b < ε)ds,(2.2)

where ℓ = {ℓat ; a ≥ 0}, denotes the local time process of ROU process X at

point a.

Theorem 2.2. In our model (1.2), if α > 0, we have

√
T (α̂T − α)

D→ N
(

0,
1− Φ(−

√

2β2

α )

1
4α + β

√

2π
α + β2

2

)

a.s.,(2.3)

where Φ(·) denotes the standard normal distribution function.

Remark 2.3. If β = 0 in (1.2), our model turns to be










dXt = −αXtdt+ σdWt + dLt − dUt,

Xt ∈ [0, b] for all t ≥ 0,

X0 = x,

we have
√
T (α̂T − α)

D→ N (0, 2α),(2.4)

which is the same as the ergodic Ornstein-Uhlenbeck processes without reflec-
tion.
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3. Proofs

Proof of Theorem 2.1. In view of Tanaka formula (Protter [19], Huang [12], or
Revuz and Yor [20]) for ROU process X , we have

Xt = X0 +

∫ t

0

I(Xs > 0)dXs +
1

2
ℓ0t

= Xt −
∫ t

0

I(Xs = 0)dXs +
1

2
ℓ0t

= Xt − β

∫ t

0

I(Xs = 0)ds+ α

∫ t

0

XsI(Xs = 0)ds−
∫ t

0

I(Xs = 0)dWs

−
∫ t

0

I(Xs = 0)dLs +

∫ t

0

I(Xs = 0)dUs +
1

2
ℓ0t

= Xt − β

∫ t

0

I(Xs = 0)ds−
∫ t

0

I(Xs = 0)dWs − Lt +
1

2
ℓ0t ,

where we used the equation (1.5),
∫ t

0
I(Xs = 0)dUs = 0 and Xt ≥ 0. Then

Lt = −β

∫ t

0

I(Xs = 0)ds−
∫ t

0

I(Xs = 0)dWs +
1

2
ℓ0t .

Since
∫ t

0
I(Xs = 0)dWs is a continuous local martingale and has finite variation

from the above equation, it equals to the initial value 0. Hence, by
∫ t

0
I(Xs =

0)ds = 0, we have

Lt =
1

2
ℓ0t .

The local time of X at b equals to the local time of −X at −b. Thus

−Xt + b = −X0 + b−
∫ t

0

I(−Xs > −b)dXs +
1

2
ℓbt

= −Xt + b+

∫ t

0

I(Xs = b)dXs +
1

2
ℓbt

= −Xt + b+ β

∫ t

0

I(Xs = b)ds− α

∫ t

0

XsI(Xs = b)ds

+

∫ t

0

I(Xs = b)dWs

+

∫ t

0

I(Xs = b)dLs −
∫ t

0

I(Xs = b)dUs +
1

2
ℓbt

= −Xt + b+ β

∫ t

0

I(Xs = b)ds+

∫ t

0

I(Xs = b)dWs − Ut +
1

2
ℓbt ,
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where we used the equation (1.6),
∫ t

0 I(Xs = b)dLs = 0 and Xt ≤ b. Then

Ut = β

∫ t

0

I(Xs = b)ds+

∫ t

0

I(Xs = b)dWs +
1

2
ℓbt .

Since
∫ t

0
I(Xs = b)dWs is a continuous local martingale and has finite variation

from the above equation, it equals to the initial value 0. Hence, by
∫ t

0
I(Xs =

b)ds = 0, we have

Ut =
1

2
ℓbt .

The proof is desired. �

Proof of Theorem 2.2. From Theorem 4.1 of Bo et al. [6], we have

lT (α) = log
dPT

α

dPT
W

= βT − α

∫ T

0

XtdXt −
α2

2

∫ T

0

X2
t dt+ α

∫ T

0

XtdLt − α

∫ T

0

XtdUt.

The estimator α̂T of α is naturally defined as

α̂T := arg sup
α∈Θ

lT (α).

Then, we can derive the maximum likelihood estimator α̂T of the parameter
α by solving the likelihood equation l′T (α) = 0. On the other hand, it follows
that

l′T (α) = −
∫ T

0

XtdWt(3.1)

and

l′′T (α) = −
∫ T

0

X2
t dt.(3.2)

Thus, in view of Taylor’s expansion, it follows that

l′T (α) = l′T (α̂T ) + (α− α̂T )l
′′
T (ξT ),

where |ξT | ≤ 1. Then

α̂T − α =
l′T (α)

∫ T

0
X2

t dt
.

Furthermore, by (3.1) and local martingale central limit theorem, we get

(α̂T − α)

√

∫ T

0

X2
t dt

D→ N (0, 1).(3.3)
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It can be proved that the process {X(t)}t≥0 in the model is ergodic and the
unique invariant density of {X(t)}t≥0 is given (Hu et al. [11]) by

p(x) =

√
2αφ(

√
2α(x − β))

1− Φ(−
√

2β2

α )

, x ∈ [0, ∞),(3.4)

where φ(u) = 1√
2π

e−
x
2

2 and Φ(u) =
∫ y

−∞ φ(u)du are the Gaussian density and

the error function, respectively. Therefore, the mean ergodic theorem holds
(Hu et al. [11]), i.e.,

(3.5) lim
t→∞

1

t

∫ t

0

f(X(s))ds =

∫ ∞

0

f(x)p(x)dx a.s. [PT
α ]

for any x ∈ S := [0, ∞) and any f ∈ L1(S, B(s)). Let f(x) = x2, we have

lim
t→∞

1

t

∫ t

0

X2(s)ds =

∫ ∞

0

x2p(x)dx

=

√
2α

1− Φ(−
√

2β2

α )

∫ ∞

0

x2φ(
√
2α(x− β))dx

=
1

1− Φ(−
√

2β2

α )

∫ ∞

0

(
t√
2α

+ β)2φ(t)dt

=

1
4α + β

√

2π
α + β2

2

1− Φ(−
√

2β2

α )

a.s. [PT
α ].(3.6)

Coupled with (3.3), we have

(3.7)
√
T (α̂T − α)

D→ N
(

0,
1− Φ(−

√

2β2

α )

1
4α + β

√

2π
α + β2

2

)

a.s.

The proof is completed. �
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